如圖,矩形OABC的兩邊在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(2,4),點(diǎn)M是矩形對(duì)角線的交點(diǎn),雙曲線y=過(guò)點(diǎn)M,雙曲線與AB交于N,則AN:NB=   
【答案】分析:先根據(jù)四邊形OABC是矩形,B(2,4)即可得出A、C兩點(diǎn)的坐標(biāo),故可求出M點(diǎn)的坐標(biāo),由雙曲線y=過(guò)點(diǎn)M可求出k的值,進(jìn)而得出反比例函數(shù)的解析式,由此可得出N點(diǎn)坐標(biāo),故可得出結(jié)論.
解答:解:∵四邊形OABC是矩形,B(2,4),
∴A(2,0)、C(0,4),
∵點(diǎn)M是矩形對(duì)角線的交點(diǎn),
∴M(1,2),
∵雙曲線y=過(guò)點(diǎn)M,
∴2=k,
∴反比例函數(shù)的解析式為y=,
∴當(dāng)x=2時(shí),y=1,
∴N(2,1),
∴AN=1,NB=AB-AN=4-1=3,
∴AN:NB=1:3.
故答案為:1:3.
點(diǎn)評(píng):本題考查的是反比例函數(shù)綜合題,熟知矩形的特點(diǎn)及用待定系數(shù)法求反比例函數(shù)的解析式是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,矩形OABC的頂點(diǎn)0、B的坐標(biāo)分別是O(0,0)、B(8,4),頂點(diǎn)A在x軸上,頂點(diǎn)C在y軸上,把△OAB沿OB翻折,使點(diǎn)A落在點(diǎn)D的位置,BD與OA交于E.
①求證:OE=EB;
②求OE、DE的長(zhǎng)度;
③求直線BD的解析.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,矩形OABC的邊OA、OC在坐標(biāo)軸上,經(jīng)過(guò)點(diǎn)B的雙曲線的解析式為y=
k
x
(x
<0),M為OC上一點(diǎn),且CM=2OM,N為BC的中點(diǎn),BM與AN交于點(diǎn)E,若四邊形EMCN的面積為
13
4
,則k=
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知如圖,矩形OABC的長(zhǎng)OA=
3
,寬OC=1,將△AOC沿AC翻折得△APC.
(1)求∠PCB的度數(shù);
(2)若P,A兩點(diǎn)在拋物線y=-
4
3
x2+bx+c上,求b,c的值,并說(shuō)明點(diǎn)C在此拋物線上;
(3)(2)中的拋物線與矩形OABC邊CB相交于點(diǎn)D,與x軸相交于另外一點(diǎn)E,若點(diǎn)M是x軸上的點(diǎn),N是y軸上的點(diǎn),以點(diǎn)E、M、D、N為頂點(diǎn)的四邊形是平行四邊形,試求點(diǎn)M、N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•樊城區(qū)模擬)已知如圖,矩形OABC的長(zhǎng)OA=2
3
,寬OC=2,將△AOC沿AC翻折得△AFC.
(1)求點(diǎn)F的坐標(biāo);
(2)求過(guò)A、F、C三點(diǎn)的拋物線解析式;
(3)在拋物線上是否存在一點(diǎn)P,使得△ACP為以A為直角頂點(diǎn)的直角三角形?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,矩形OABC的頂點(diǎn)坐標(biāo)分別是(0,0),(4,0),(4,1),(0,1),在矩形OABC的內(nèi)部任取一點(diǎn)(x,y),則x<y的概率是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案