【題目】如圖,在正方形ABCD中,AB=4cm,動點E從點A出發(fā),以1cm/秒的速度沿折線AB—BC的路徑運動,到點C停止運動.過點E作 EF∥BD,EF與邊AD(或邊CD)交于點F,EF的長度y(cm)與點E的運動時間x(秒)的函數圖象大致是
A. B.
C. D.
科目:初中數學 來源: 題型:
【題目】如圖,直線經過點,且垂直于x軸,直線:()經過點,與交于點,.點是線段上一點,直線軸,交于點,是的中點.雙曲線()經過點,與交于點.
(1)求的解析式;
(2)當點是中點時,求點的坐標;
(3)當時,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AC平分∠BCD,AC⊥AB,E是BC的中點,AD⊥AE.
(1)求證:AC2=CD·BC;
(2)過E作EG⊥AB,并延長EG至點K,使EK=EB.
①若點H是點D關于AC的對稱點,點F為AC的中點,求證:FH⊥GH;
②若∠B=30°,求證:四邊形AKEC是菱形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙O為等邊△ABC的外接圓,AD∥BC,∠ADC=90°,CD交⊙O于點E.
(1)求證:AD是⊙O的切線;
(2)若DE=2,求陰影部分的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正六邊形 ABCDEF的中心與坐標原點O重合,其中A(-2,0).將六邊形 ABCDEF繞原點O按順時針方向旋轉2018次,每次旋轉60°,則旋轉后點A的對應點A'的坐標是( ).
A. (1,) B. (,1) C. (1,) D. (-1,)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖,拋物線經過直線與坐標軸的兩個交點.此拋物線與軸的另一個交點為.拋物線的頂點為.
求此拋物線的解析式;
若點為拋物線上一動點,是否存在點.使與的面積相等?若存在,求點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,拋物線﹔與軸交于點,拋物線的頂點為,直線.
(1)當時,畫出直線和拋物線,并直接寫出直線被拋物線截得的線段長.
(2)隨著取值的變化,判斷點是否都在直線上并說明理由.
(3)若直線被拋物線截得的線段長不小于3,結合函數的圖像,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖已知直線與拋物線y=ax2+bx+c相交于A(﹣1,0),B(4,m)兩點,拋物線y=ax2+bx+c交y軸于點C(0,﹣),交x軸正半軸于D點,拋物線的頂點為M.
(1)求拋物線的解析式;
(2)設點P為直線AB下方的拋物線上一動點,當△PAB的面積最大時,求△PAB的面積及點P的坐標;
(3)若點Q為x軸上一動點,點N在拋物線上且位于其對稱軸右側,當△QMN與△MAD相似時,求N點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線 與 軸交于和,與 軸交于 點,點關于拋物線的對稱軸的對稱點為點.
(1)求此拋物線的解析式和對稱軸.
(2)如圖 2,當點在拋物線的對稱軸上運動時,在直線上是否存在點,使得以點、、、為頂點的四邊形為平行四邊形?若存在,請求出點 的坐標;若不存在,請說明理由.
(3)如圖 3,當點、、三點共圓時,請求出該圓圓心的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com