如圖1,AB是⊙O的直徑,點C在AB的延長線上,AB=4,BC=2,P是⊙O上半部分的一個動點,連接OP,CP.
(1)求△OPC的最大面積;
(2)求∠OCP的最大度數(shù);
(3)如圖2,延長PO交⊙O于點D,連接DB,當(dāng)CP=DB時,求證:CP是⊙O的切線.
【解析】
試題分析:(1)在△OPC中,底邊OC長度固定,因此要想△OPC的面積最大,則要OC邊上的高最大;由圖形可知,當(dāng)OP⊥OC時高最大;
(2)要想∠OCP的度數(shù)最大,由圖形可知當(dāng)PC與⊙O相切才能滿足,根據(jù)切線的性質(zhì)即可求得;
(3)連接AP,BP通過△ODB≌△BPC可求得DP⊥PC,從而求得PC是⊙O的切線
試題解析:(1)∵AB=4,
∴OB=2,OC=OB+BC=4.
在△OPC中,設(shè)OC邊上的高為h,
∵S△OPC=OC•h=2h,
∴當(dāng)h最大時,S△OPC取得最大值.
觀察圖形,當(dāng)OP⊥OC時,h最大,如答圖1所示:
此時h=半徑=2,S△OPC=2×2=4.
∴△OPC的最大面積為4.
(2)當(dāng)PC與⊙O相切時,∠OCP最大.如答圖2所示:
∵tan∠OCP=,
∴∠OCP=30°
∴∠OCP的最大度數(shù)為30°.
(3)證明:如答圖3,連接AP,BP.
∴∠A=∠D=∠APD=∠ABD,
∵∠AOP=∠DOB
∴AP=BD,
∵CP=DB,
∴AP=CP,
∴∠A=∠C
∴∠A=∠D=∠APD=∠ABD∠C,
在△ODB與△BPC中
,
∴△ODB≌△BPC(SAS),
∴∠D=∠BPC,
∵PD是直徑,
∴∠DBP=90°,
∴∠D+∠BPD=90°,
∴∠BPC+∠BPD=90°,
∴DP⊥PC,
∵DP經(jīng)過圓心,
∴PC是⊙O的切線.
考點:1、最值問題;2、切線的性質(zhì)與判定;3、圓周角定理
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(浙江溫州卷)數(shù)學(xué)(解析版) 題型:解答題
一個不透明的袋中裝有20個只有顏色不同的球,其中5個黃球、8個黑球、7個紅球
(1)求從袋中摸出一個球是黃球的概率;
(2)現(xiàn)從袋中取出若干個黑球,攪勻后,使從袋中摸出一個黑球的概率是,求從袋中取出黑球的個數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(浙江寧波卷)數(shù)學(xué)(解析版) 題型:選擇題
如果一個多面體的一個面是多邊形,其余各面是有一個公共頂點的三角形,那么這個多面體叫做棱錐。如圖是一個四棱柱和一個六棱錐,它們各有12條棱,下列棱柱中和九棱錐的棱數(shù)相等的是
A. 五棱柱 B. 六棱柱 C. 七棱柱 D. 八棱柱
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(浙江寧波卷)數(shù)學(xué)(解析版) 題型:選擇題
用矩形紙片折出直角的平分線,下列折法正確的是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(江西南昌卷)數(shù)學(xué)(解析版) 題型:解答題
已知梯形ABCD,請使用無刻度直尺畫圖.
(1)在圖1中畫出一個與梯形ABCD面積相等,且以CD為邊的三角形;
(2)圖2中畫一個與梯形ABCD面積相等,且以AB為邊的平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(江西南昌卷)數(shù)學(xué)(解析版) 題型:選擇題
如圖1,將一個邊長為a的正方形紙片剪去兩個小矩形,得到一個“”的圖案,如圖2所示,再將剪下的兩個小矩形拼成一個新的矩形,如圖3所示,則新矩形的周長可表示為( )
A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(江蘇鎮(zhèn)江卷)數(shù)學(xué)(解析版) 題型:解答題
在一只不透明的布袋中裝有紅球、黃球各若干個,這些球除顏色外都相同,均勻搖勻.
(1)若布袋中有3個紅球,1個黃球.從布袋中一次摸出2個球,計算“摸出的球恰是一紅一黃”的概率(用“畫樹狀圖”或“列表”的方法寫出計算過程);
(2)若布袋中有3個紅球,x個黃球.
請寫出一個x的值 ,使得事件“從布袋中一次摸出4個球,都是黃球”是不可能的事件;
(3)若布袋中有3個紅球,4個黃球.
我們知道:“從袋中一次摸出4個球,至少有一個黃球”為必然事件.
請你仿照這個表述,設(shè)計一個必然事件: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com