(本小題6分) 如圖,OA、OC是⊙O的半徑,OA=1,且OC⊥OA,點(diǎn)D在弧AC上,弧AD=2弧CD,在OC求一點(diǎn)P,使PA+PD最小,并求這個(gè)最小值.
解:延長(zhǎng)AO交⊙O于B,聯(lián)結(jié)BD交OC于點(diǎn)P,
則點(diǎn)P為所求          ------------------------2分
聯(lián)結(jié)AD
∵AB為⊙O的直徑
∴∠ADB=90°        ------------------------3分
∵OC⊥OA,弧AD=2弧CD
∴∠ABD=30°       -------------------------5分
∵OA=1
∴AB=2
∴BD= 
即PA+PD最小值為解析:
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本小題8分)如圖,在平行四邊形中,點(diǎn)是對(duì)角線上的一點(diǎn),,,垂足分別為 ,且,平行四邊形是菱形嗎?這什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(11·湖州)(本小題8分)

如圖,已知AB是⊙O的直徑,弦CD⊥AB,垂足為E,∠AOC=60°,OC=2。

⑴求OE和CD的長(zhǎng);

⑵求圖中陰影部隊(duì)的面積。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年高級(jí)中等學(xué)校招生全國(guó)統(tǒng)一考試數(shù)學(xué)卷(江蘇揚(yáng)州) 題型:解答題

(本小題8分)如圖,在△ABC中,,點(diǎn)D在BC上,且DC=AC,
∠ACB的平分線CF交AD于點(diǎn)F,點(diǎn)E是AB的中點(diǎn),連結(jié)EF.

求證:EF∥BC;
若△ABD的面積為6,求四邊形BDFE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年濱海新區(qū)大港初中畢業(yè)生學(xué)業(yè)考試第一次模擬試卷數(shù)學(xué) 題型:解答題

(本小題8分)如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,
AE⊥CD于點(diǎn)E,DA平分∠BDE.
(Ⅰ)求證:AE是⊙O的切線;
(Ⅱ)若∠DBC=30°,DE="1" cm,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014屆浙江省湖州市七年級(jí)上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

(本小題6分)如圖,紙上有五個(gè)邊長(zhǎng)為1的小正方形組成的圖形紙,我們可以把它剪開拼成一個(gè)正方形。

1.拼成的正方形的面積與邊長(zhǎng)分別是多少?

2.你能在3×3方格圖中,連接四個(gè)格點(diǎn)組成面積為5的正方形嗎?

3.你能把十個(gè)小正方形組成的圖形紙,剪開并拼成正方形嗎?若能,則它的邊長(zhǎng)是多少?

 

查看答案和解析>>

同步練習(xí)冊(cè)答案