【題目】如圖所示,在△ABC中,∠B90°,AB12mm,BC24mm,動(dòng)點(diǎn)P從點(diǎn)A開始,以2mm/S的速度沿邊ABB移動(dòng)(不與點(diǎn)B重合),動(dòng)點(diǎn)Q從點(diǎn)B開始,以4m/s的速度沿邊BCC移動(dòng)(不與C重合),如果P、Q分別從A、B同時(shí)出發(fā),設(shè)運(yùn)動(dòng)的時(shí)間為xs,四邊形APQC的面積為ymm2

1)寫出yx之間的函數(shù)表達(dá)式;

2)當(dāng)x2時(shí),求四邊形APQC的面積.

【答案】(1)y4x224x+144;(2112mm2

【解析】

1)用x表示PBBQ.利用兩個(gè)直角三角形的面積差求得答案即可;

2)求出x2時(shí),y的值即可得.

解:(1)∵運(yùn)動(dòng)時(shí)間為x,點(diǎn)P的速度為2mm/s,點(diǎn)Q的速度為4mm/s

PB122x,BQ4x,

y

2)當(dāng)x2時(shí),y4×2224×2+144112,

即當(dāng)x2時(shí),四邊形APQC的面積為112mm2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,B,CD在⊙O上,AB=AC,∠A=40°,CDAB,若⊙O的半徑為2,則圖中陰影部分的面積是(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場要經(jīng)營一種新上市的文具,進(jìn)價(jià)為20元,試營銷階段發(fā)現(xiàn):當(dāng)銷售單價(jià)是25元時(shí),每天的銷售量為250件,銷售單價(jià)每上漲1元,每天的銷售量就減少10

1)寫出商場銷售這種文具,每天所得的銷售利潤(元)與銷售單價(jià)(元)之間的函數(shù)關(guān)系式;

2)求銷售單價(jià)為多少元時(shí),該文具每天的銷售利潤最大;

3)商場的營銷部結(jié)合上述情況,提出了AB兩種營銷方案

方案A:該文具的銷售單價(jià)高于進(jìn)價(jià)且不超過30元;

方案B:每天銷售量不少于10件,且每件文具的利潤至少為25

請(qǐng)比較哪種方案的最大利潤更高,并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為營造安全出行的良好交通氛圍,實(shí)時(shí)監(jiān)控道路交迸,某市交管部門在路口安裝的高清攝像頭如圖所示,立桿MA與地面AB垂直,斜拉桿CDAM交于點(diǎn)C,橫桿DEAB,攝像頭EFDE于點(diǎn)E,AC=55,CD=3,EF=0.4,CDE=162°。

(1)求∠MCD的度數(shù);

(2)求攝像頭下端點(diǎn)F到地面AB的距離。(精確到百分位)

(參考數(shù)據(jù);sin72°=0.95,cos72°≈0.31,tan72°=3.08,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠C90°,∠B30°,ACD、E分別在邊ACBC上,CD1DEAB,將△CDE繞點(diǎn)C旋轉(zhuǎn),旋轉(zhuǎn)后點(diǎn)D、E對(duì)應(yīng)的點(diǎn)分別為D′、E′,當(dāng)點(diǎn)E′落在線段AD′上時(shí),連接BE′,此時(shí)BE′的長為(  )

A.2B.3C.2D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的網(wǎng)格是正方形網(wǎng)格,線段AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)αα180°)后與⊙O相切,則α的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸于A(﹣3,0),B40)兩點(diǎn),與y軸交于點(diǎn)C,連接ACBC

1)求此拋物線的表達(dá)式;

2)求過B、C兩點(diǎn)的直線的函數(shù)表達(dá)式;

3)點(diǎn)P是第一象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn).過點(diǎn)PPMx軸,垂足為點(diǎn)M,PMBC于點(diǎn)Q.試探究點(diǎn)P在運(yùn)動(dòng)過程中,是否存在這樣的點(diǎn)Q,使得以A,CQ為頂點(diǎn)的三角形是等腰三角形.若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)并銷售某種產(chǎn)品,整理出該商品在第()天的售價(jià)函數(shù)關(guān)系如圖所示,已知該商品的進(jìn)價(jià)為每件30元,第天的銷售量為件.

1)試求出售價(jià)之間的函數(shù)關(guān)系是;

2)請(qǐng)求出該商品在銷售過程中的最大利潤;

3)在該商品銷售過程中,試求出利潤不低于3600元的的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是由兩個(gè)長方體組合而成的一個(gè)立體圖形的主視圖和左視圖,根據(jù)圖中所標(biāo)尺寸(單位: )

(1)直接寫出上下兩個(gè)長方休的長、寬、商分別是多少:

(2)求這個(gè)立體圖形的體積.

查看答案和解析>>

同步練習(xí)冊答案