【題目】已知a,b,c滿足(a-)2++=0.
(1)求a,b,c的值.
(2)以a,b,c為邊能否構(gòu)成三角形?若能構(gòu)成,求出該三角形的周長(zhǎng);若不能,請(qǐng)說明理由.
【答案】(1) a=2 ,b=5,c=3 (2) 能 5 .
【解析】試題分析:(1)由(a-)2≥0, , ≥0,根據(jù)幾個(gè)非負(fù)數(shù)的和為0,那么每一個(gè)非負(fù)數(shù)都為0進(jìn)行解答即可;
(2)根據(jù)三角形三邊關(guān)系進(jìn)行判定即可得.
試題解析:(1)∵(a-)2≥0, , ≥0,
且(a-)2++=0,
∴a-=0,b-5=0,c-3=0,
∴a=2,b=5,c=3;
(2)∵a+c=2+3=5,5>5,
∴a+c>b,
∴以a,b,c為邊能構(gòu)成三角形,其周長(zhǎng)為a+b+c=2+5+3=5+5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖是某種窗戶的形狀,其上部是半圓形,下部是邊長(zhǎng)相同的四個(gè)小正方形,已知下部的小正方形的邊長(zhǎng)為am,計(jì)算:
(1)窗戶的面積;
(2)窗框的總長(zhǎng);
(3)若a=1,窗戶上安裝的是玻璃,玻璃每平方米25元,窗框每米20元,窗框的厚度不計(jì),求制作這種窗戶需要的費(fèi)用是多少元(π取3.14,結(jié)果保留整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到(點(diǎn)B′與點(diǎn)B是對(duì)應(yīng)點(diǎn),點(diǎn)C′與點(diǎn)C是對(duì)應(yīng)點(diǎn)),連接CC′,則∠CC′B′的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=3,BC=4,將邊AC沿CE翻折,使點(diǎn)A落在AB上的點(diǎn)D處;再將邊BC沿CF翻折,使點(diǎn)B落在CD的延長(zhǎng)線上的點(diǎn)B′處,兩條折痕與斜邊AB分別交于點(diǎn)E、F,則線段B′F的長(zhǎng)為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知C是AB的中點(diǎn),D是AC的中點(diǎn),E是BC的中點(diǎn).
(1)若AB=18cm,求DE的長(zhǎng);(2)若CE=5cm,求DB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一位籃球運(yùn)動(dòng)員跳起投籃,球沿拋物線y=﹣ x2+3.5運(yùn)行,然后準(zhǔn)確落入籃框內(nèi).已知籃框的中心離地面的距離為3.05米.
(1)球在空中運(yùn)行的最大高度為多少米?
(2)如果該運(yùn)動(dòng)員跳投時(shí),球出手離地面的高度為2.25米,請(qǐng)問他距離籃框中心的水平距離是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2﹣3x+ 與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,點(diǎn)D是直線BC下方拋物線上一點(diǎn),過點(diǎn)D作y軸的平行線,與直線BC相交于點(diǎn)E
(1)求A、B的坐標(biāo);
(2)求直線BC的解析式;
(3)當(dāng)線段DE的長(zhǎng)度最大時(shí),求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在四邊形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,點(diǎn)E、F分別在線段BC、CD上,∠EAF=30°,連接EF.
(1)如圖2,將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°后得到△A′B′E′(A′B′與AD重合),那么
①∠E′AF度數(shù)②線段BE、EF、FD之間的數(shù)量關(guān)系
(2)如圖3,當(dāng)點(diǎn)E、F分別在線段BC、CD的延長(zhǎng)線上時(shí),其他條件不變,請(qǐng)?zhí)骄烤段BE、EF、FD之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:直線AB經(jīng)過點(diǎn)A(0,3)點(diǎn)B( ,0),點(diǎn)M在y軸上,⊙M經(jīng)過點(diǎn)A、B,交x軸于另一點(diǎn)C.
(1)求直線AB的解析式;
(2)求點(diǎn)M的坐標(biāo);
(3)點(diǎn)P是劣弧AC上一個(gè)動(dòng)點(diǎn),當(dāng)P點(diǎn)運(yùn)動(dòng)時(shí),問:線段PA,PB,PC有什么數(shù)量關(guān)系?并給出證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com