【題目】如圖,在ABCD中,過A、B、D三點的⊙O交BC于點E,連接DE,∠CDE=∠DAE.
(1)求證:DE=DC;
(2)求證:直線DC是⊙O的切線.
【答案】見解析
【解析】
試題分析:(1)由平行四邊形的性質(zhì)得出AD∥BC,AB=DC,進而證得∠DAE=∠AEB,證出=,即可得出DE=DC;
(2)作直徑DF,連接EF,則∠EFD=∠EAD,證出∠EFD=∠CDE,再由DF是⊙O的直徑,得出∠DEF=90°,得出∠FDC=90°,即可得出結(jié)論.
(1)證明:∵四邊形ABCD是平行四邊形,
∴AD∥BC,AB=DC,
∴∠DAE=∠AEB.
∴=,
∴AB=DE,
∴DE=DC;
(2)解:如圖所示:作直徑DF,連接EF.
則∠EFD=∠EAD,
∵∠CDE=∠DAE,
∴∠EFD=∠CDE.
∵DF是⊙O的直徑,
∴∠DEF=90°,
∴∠EFD+∠FDE=90°,
∴∠CDE+∠FDE=90°
∴∠FDC=90°.
∴直線DC是⊙O的切線.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個三角形中,若一條邊等于另一條邊的兩倍,則稱這種三角形為“倍邊三角形”. 例如:邊長為a=2,b=3,c=4的三角形就是一個倍邊三角形.
(1)如果一個倍邊三角形的兩邊長為6和8,那么第三條邊長所有可能的值為 .
(2)如圖①,在△ABC中,AB=AC,延長AB到D,使BD=AB,E是AB的中點.
求證:△DCE是倍邊三角形;
(3)如圖②,Rt△ABC中,∠C=90°,AC=4,BC=8,若點D在邊AB上(點D不與A、B重合),且△BCD是倍邊三角形,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當(dāng)其中一個點到達終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是t秒(0<t≤15).過點D作DF⊥BC于點F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說明理由;
(3)當(dāng)t為何值時,△DEF為直角三角形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一段導(dǎo)線,在0 ℃時電阻為2 Ω,溫度每增加1 ℃,電阻增加0.008 Ω,那么電阻R(Ω)表示為溫度t(℃)的函數(shù)關(guān)系式為( )
A. R=2+0.008 t B. R=2-0.008 t
C. t=2+0.008 R D. t=2-0.008 R
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】古生物學(xué)家發(fā)現(xiàn)350 000 000年前,地球上每年大約是400天,用科學(xué)記數(shù)法表示350 000 000= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】教室里座位整齊擺放,若小華坐在第四排第6行,用有序數(shù)對(4,6)表示,則(2,4)表示的含義是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com