科目: 來源:2008年廣東省肇慶市初中畢業(yè)升學統(tǒng)一考試、數(shù)學試卷 題型:044
如圖,在Rt△ABC中,∠ABC=90°,D是AC的中點,⊙O經(jīng)過A、B、D三點,CB的延長線交⊙O于點E.
(1)求證AE=CE;
(2)EF與⊙O相切于點E,交AC的延長線于點F,若CD=CF=2 cm,求⊙O的直徑;
(3)若(n>0),求sin∠CAB.
查看答案和解析>>
科目: 來源:2008年廣東省深圳市初中畢業(yè)升學統(tǒng)一考試、數(shù)學試卷 題型:044
“震災無情人有情”.民政局將全市為四川受災地區(qū)捐贈的物資打包成件,其中帳篷和食品共320件,帳篷比食品多80件.
(1)求打包成件的帳篷和食品各多少件?
(2)現(xiàn)計劃租用甲、乙兩種貨車共8輛,一次性將這批帳篷和食品全部運往受災地區(qū).已知甲種貨車最多可裝帳篷40件和食品10件,乙種貨車最多可裝帳篷和食品各20件.則民政局安排甲、乙兩種貨車時有幾種方案?請你幫助設計出來.
(3)在第(2)問的條件下,如果甲種貨車每輛需付運輸費4000元,乙種貨車每輛需付運輸費3600元.民政局應選擇哪種方案可使運輸費最少?最少運輸費是多少元?
查看答案和解析>>
科目: 來源:2008年廣東省梅州市初中畢業(yè)升學統(tǒng)一考試、數(shù)學試卷 題型:044
如圖所示,在梯形ABCD中,已知AB∥CD,AD⊥DB,AD=DC=CB,AB=4.以AB所在直線為x軸,過D且垂直于AB的直線為y軸建立平面直角坐標系.
(1)求∠DAB的度數(shù)及A、D、C三點的坐標;
(2)求過A、D、C三點的拋物線的解析式及其對稱軸L.
(3)若P是拋物線的對稱軸L上的點,那么使△PDB為等腰三角形的點P有幾個?(不必求點P的坐標,只需說明理由)
查看答案和解析>>
科目: 來源:2008年廣東省中山市初中畢業(yè)升學統(tǒng)一考試、數(shù)學試卷 題型:044
將兩塊大小一樣含30°角的直角三角板,疊放在一起,使得它們的斜邊AB重合,直角邊不重合,已知AB=8,BC=AD=4,AC與BD相交于點E,連結CD.
(1)填空:如圖1,AC=________,BD=________;四邊形ABCD是________梯形.
(2)請寫出圖1中所有的相似三角形(不含全等三角形).
(3)如圖2,若以AB所在直線為x軸,過點A垂直于AB的直線為y軸建立如圖2的平面直角坐標系,保持△ABD不動,將△ABC向x軸的正方向平移到△FGH的位置,F(xiàn)H與BD相交于點P,設AF=t,△FBP面積為S,求S與t之間的函數(shù)關系式,并寫出t的取值值范圍.
查看答案和解析>>
科目: 來源:2008年廣東省東莞市初中畢業(yè)升學統(tǒng)一考試、數(shù)學試卷 題型:044
將兩塊大小一樣含30°角的直角三角板,疊放在一起,使得它們的斜邊AB重合,直角邊不重合,已知AB=8,BC=AD=4,AC與BD相交于點E,連結CD.
(1)填空:如圖1,AC=________,BD=________;四邊形ABCD是________梯形.
(2)請寫出圖1中所有的相似三角形(不含全等三角形).
(3)如圖2,若以AB所在直線為x軸,過點A垂直于AB的直線為y軸建立如圖2的平面直角坐標系,保持△ABD不動,將△ABC向x軸的正方向平移到△FGH的位置,F(xiàn)H與BD相交于點P,設AF=t,△FBP面積為S,求S與t之間的函數(shù)關系式,并寫出t的取值值范圍.
查看答案和解析>>
科目: 來源:2008年山東省青島市初中畢業(yè)升學統(tǒng)一考試、數(shù)學試卷 題型:044
實際問題:某學校共有18個教學班,每班的學生數(shù)都是40人.為了解學生課余時間上網(wǎng)情況,學校打算做一次抽樣調(diào)查,如果要確保全校抽取出來的學生中至少有10人在同一班級,那么全校最少需抽取多少名學生?
建立模型:為解決上面的“實際問題”,我們先建立并研究下面從口袋中摸球的數(shù)學模型:
在不透明的口袋中裝有紅、黃、白三種顏色的小球各20個(除顏色外完全相同),現(xiàn)要確保從口袋中隨機摸出的小球至少有10個是同色的,則最少需摸出多少個小球?
為了找到解決問題的辦法,我們可把上述問題簡單化:
(1)我們首先考慮最簡單的情況:即要確保從口袋中摸出的小球至少有2個是同色的,則最少需摸出多少個小球?
假若從袋中隨機摸出3個小球,它們的顏色可能會出現(xiàn)多種情況,其中最不利的情況就是它們的顏色各不相同,那么只需再從袋中摸出1個小球就可確保至少有2個小球同色,即最少需摸出小球的個數(shù)是:1+3=4(如圖①);
(2)若要確保從口袋中摸出的小球至少有3個是同色的呢?
我們只需在(1)的基礎上,再從袋中摸出3個小球,就可確保至少有3個小球同色,即最少需摸出小球的個數(shù)是:1+3×2=7(如圖②)
(3)若要確保從口袋中摸出的小球至少有4個是同色的呢?
我們只需在(2)的基礎上,再從袋中摸出3個小球,就可確保至少有4個小球同色,即最少需摸出小球的個數(shù)是:1+3×3=10(如圖③):
……
(10)若要確保從口袋中摸出的小球至少有10個是同色的呢?
我們只需在(9)的基礎上,再從袋中摸出3個小球,就可確保至少有10個小球同色,即最少需摸出小球的個數(shù)是:1+3×(10-1)=28(如圖⑩)
模型拓展一:在不透明的口袋中裝有紅、黃、白、藍、綠五種顏色的小球各20個(除顏色外完全相同),現(xiàn)從袋中隨機摸球:
(1)若要確保摸出的小球至少有2個同色,則最少需摸出小球的個數(shù)是________;
(2)若要確保摸出的小球至少有10個同色,則最少需摸出小球的個數(shù)是________;
(3)若要確保摸出的小球至少有n個同色(n<20),則最少需摸出小球的個數(shù)是________.
模型拓展二:在不透明口袋中裝有m種顏色的小球各20個(除顏色外完全相同),現(xiàn)從袋中隨機摸球:
(1)若要確保摸出的小球至少有2個同色,則最少需摸出小球的個數(shù)是________.
(2)若要確保摸出的小球至少有n個同色(n<20),則最少需摸出小球的個數(shù)是________.
問題解決:(1)請把本題中的“實際問題”轉化為一個從口袋中摸球的數(shù)學模型;
(2)根據(jù)(1)中建立的數(shù)學模型,求出全校最少需抽取多少名學生.
查看答案和解析>>
科目: 來源:2008年山東省聊城市初中畢業(yè)升學統(tǒng)一考試、數(shù)學試卷 題型:044
如圖,把一張長10 cm,寬8 cm的矩形硬紙板的四周各剪去一個同樣大小的正方形,再折合成一個無蓋的長方體盒子(紙板的厚度忽略不計).
(1)要使長方體盒子的底面積為48 cm2,那么剪去的正方形的邊長為多少?
(2)你感到折合而成的長方體盒子的側面積會不會有更大的情況?如果有,請你求出最大值和此時剪去的正方形的邊長;如果沒有,請你說明理由;
(3)如果把矩形硬紙板的四周分別剪去2個同樣大小的正方形和2個同樣形狀、同樣大小的矩形,然后折合成一個有蓋的長方體盒子,是否有側面積最大的情況;如果有,請你求出最大值和此時剪去的正方形的邊長;如果沒有,請你說明理由.
查看答案和解析>>
科目: 來源:2008年山東省聊城市初中畢業(yè)升學統(tǒng)一考試、數(shù)學試卷 題型:044
小亮家窗戶上的遮雨罩是一種玻璃鋼制品,它的頂部是圓柱側面的一部分(如圖1),它的側面邊緣上有兩條圓弧(如圖2),其中頂部圓弧AB的圓心Q1在豎直邊緣AD上,另一條圓弧BC的圓心O2在水平邊緣DC的延長線上,其圓心角為90°,請你根據(jù)所標示的尺寸(單位:cm)解決下面的問題(玻璃鋼材料的厚度忽略不計,π取3.1416).
(1)計算出弧AB所對的圓心角的度數(shù)(精確到0.01度)及弧AB的長度(精確到0.1 cm);
(2)計算出遮雨罩一個側面的面積(精確到1 cm2);
(3)制做這個遮雨罩大約需要多少平方米的玻璃鋼材料(精確到0.1平方米)?
查看答案和解析>>
科目: 來源:2008年山東省濰坊市初中畢業(yè)升學統(tǒng)一考試、數(shù)學試卷 題型:044
如圖,圓B切y軸于原點O,過定點A(-2,0)作圓B的切線交圓于點P,已知tan∠PAB=,拋物線C經(jīng)過A、P兩點.
(1)求圓B的半徑.
(2)若拋物線C經(jīng)過點B,求其解析式.
(3)設拋物線C交y軸于點M,若三角形APM為直角三角形,求點M的坐標.
查看答案和解析>>
科目: 來源:2008年山東省濰坊市初中畢業(yè)升學統(tǒng)一考試、數(shù)學試卷 題型:044
如圖,矩形紙片ABCD中,AB=8,將紙片折疊,使頂點B落在邊AD的E點上,BG=10.
(1)當折痕的另一端F在AB邊上時,如圖(1).求△EFG的面積.
(2)當折痕的另一端F在AD邊上時,如圖(2).證明四邊形BGEF為菱形,并求出折痕GF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com