相關(guān)習(xí)題
 0  226544  226552  226558  226562  226568  226570  226574  226580  226582  226588  226594  226598  226600  226604  226610  226612  226618  226622  226624  226628  226630  226634  226636  226638  226639  226640  226642  226643  226644  226646  226648  226652  226654  226658  226660  226664  226670  226672  226678  226682  226684  226688  226694  226700  226702  226708  226712  226714  226720  226724  226730  226738  366461 

科目: 來源:不詳 題型:解答題

如圖,以BC為直徑的⊙O交△CFB的邊CF于點A,BM平分∠ABC交AC于點M,AD⊥BC于點D,AD交BM于點N,ME⊥BC于點E,AB2=AF•AC,cos∠ABD=
3
5
,AD=12.
(1)求證:△ANM≌△ENM;
(2)求證:FB是⊙O的切線;
(3)證明四邊形AMEN是菱形,并求該菱形的面積S.

查看答案和解析>>

科目: 來源:不詳 題型:單選題

如圖,PA切⊙O于點A,PBC是⊙O的一條割線,且PA=2
3
,BC=2PB,那么PB的長為( 。
A.2B.
6
C.4D.2
6

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知:如圖,AB是⊙O的直徑,P是AB上的一點(與A、B不重合),QP⊥AB,垂足為P,直線QA交⊙O于C點,過C點作⊙O的切線交直線QP于點D.則△CDQ是等腰三角形.
對上述命題證明如下:
證明:連接OC
∵OA=OC
∴∠A=∠1
∵CD切O于C點
∴∠OCD=90°
∴∠1+∠2=90°
∴∠A+∠2=90°
在Rt△QPA中,∠QPA=90°
∴∠A+∠Q=90°
∴∠2=∠Q
∴DQ=DC
即CDQ是等腰三角形.
問題:對上述命題,當(dāng)點P在BA的延長線上時,其他條件不變,如圖所示,結(jié)論“△CDQ是等腰三角形”還成立嗎?若成立,請給予證明;若不成立,請說明理由.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖,AB,BC,CD分別與⊙O相切于E,F(xiàn),G,且ABCD,BO=6cm,CO=8cm.求BC的長.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,弦DC交AB于E,過C作⊙O的切線交DB的延長線于M,若AB=4,∠ADC=45°,∠M=75°,則CD的長為( 。
A.
3
B.2C.3
3
D.2
3

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,弦DE垂直平分半徑OA,C為垂足,DE=3,連接BD,過點E作EMBD,交BA的延長線于點M.
(1)求⊙O的半徑;
(2)求證:EM是⊙O的切線;
(3)若弦DF與直徑AB相交于點P,當(dāng)∠APD=45°時,求圖中陰影部分的面積.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知AB是⊙O的直徑,AP是⊙O的切線,A是切點,BP與⊙O交于點C
(1)如圖①,若AB=1,∠P=30°,求AP的長(結(jié)果保留根號);
(2)如圖②,若D為AP的中點,求證:直線CD是⊙O的切線.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,⊙O交x軸于A、B兩點,直線FA⊥x軸于點A,點D在FA上,且DO平行于⊙O的弦MB,連DM并延長交x軸于點C.
(1)判斷直線DC與⊙O的位置關(guān)系,并給出證明;
(2)設(shè)點D的坐標為(-2,4),①求MC的長;②若動點P從點A出發(fā)向點D勻速運動,速度是每秒1個單位長;同時點Q從點D出發(fā)向點C勻速運動,速度是每秒2個單位長;其中一個點到達終點時運動即結(jié)束.連接PQ交OD于點H,當(dāng)△PDH為直角三角形時,求點P的坐標.

查看答案和解析>>

科目: 來源:不詳 題型:填空題

如圖,已知⊙O是以坐標原點O為圓心,1為半徑的圓,∠AOB=45°,點P在x軸上運動,若過點P且與OA平行的直線與⊙O有公共點,設(shè)P(x,0),則x的取值范圍是______.

查看答案和解析>>

科目: 來源:不詳 題型:填空題

如圖,圓周角∠BAC=55°,分別過B,C兩點作⊙O的切線,兩切線相交于點P,則∠BPC=______°.

查看答案和解析>>

同步練習(xí)冊答案