科目: 來源: 題型:
【題目】問題探究:觀察下面由“※”組成的圖案和算式,解答問題:
1+3=4=()2=22
1+3+5=9=()2=32
1+3+5+7=16=()2=42
…
問題解決:
(1)試猜想1+3+5+7+9…+49的結果為 ;
(2)若n 表示正整數(shù),請用含n 的代數(shù)式表示1+3+5+7+9+…+(2n﹣1)+(2n+1) 的結果.
問題拓展:
(3)請用上述規(guī)律計算:1017+1019+…+2017+2019.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校舉辦八年級學生數(shù)學素養(yǎng)大賽,比賽共設四個項目:七巧板拼圖,趣題巧解,數(shù)學應用,魔方復原,每個項目得分都按一定百分比折算后記入總分,下表為甲,乙,丙三位同學得分情況(單位:分)
七巧板拼圖 | 趣題巧解 | 數(shù)學應用 | 魔方復原 | |
甲 | 66 | 89 | 86 | 68 |
乙 | 66 | 60 | 80 | 68 |
丙 | 66 | 80 | 90 | 68 |
(1)比賽后,甲猜測七巧板拼圖,趣題巧解,數(shù)學應用,魔方復原這四個項目得分分別按10%,40%,20%,30%折算△記入總分,根據(jù)猜測,求出甲的總分;
(2)本次大賽組委會最后決定,總分為80分以上(包含80分)的學生獲一等獎,現(xiàn)獲悉乙,丙的總分分別是70分,80分.甲的七巧板拼圖、魔方復原兩項得分折算后的分數(shù)和是20分,問甲能否獲得這次比賽的一等獎?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠DAB=∠BCD=90°,點E是BD上任意一點,點O是AC的中點,AF∥EC交EO的延長線于點F,連接AE,CF.
(1)判斷四邊形AECF是什么四邊形,并證明;
(2)若點E是BD的中點,四邊形AECF又是什么四邊形?說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中的兩點A(m,0),B(2m,0)(m>0),二次函數(shù)y=ax2+bx+m的圖象與x軸交與A,B兩點與y軸交于點C,頂點為點D.
(1)當m=1時,直線BC的解析式為 , 二次函數(shù)y=ax2+bx+m的解析式為;
(2)求二次函數(shù)y=ax2+bx+m的解析式為(用含m的式子表示);
(3)連接AC、AD、BD,請你探究 的值是否與m有關?若有關,求出它與m的關系;若無關,說明理由;
(4)當m為正整數(shù)時,依次得到點A1 , A2 , …,Am的橫坐標分別為1,2,…m;點B1 , B2 , …,Bm 的橫坐標分別為2,4,…2m(m≤10);經過點A1 , B1 , 點A2 , B2 , …,點Am , Bm的這組拋物線y=ax2+bx+m分別與y軸交于點C1 , C2 , …,Cm , 由此得到了一組直線B1C1 , B2C2 , …,BmCm , 在點B1 , B2 , …,Bm 中任取一點Bn , 以線段OBn為邊向上作正方形OBnEnFn , 若點En在這組直線中的一條直線上,直接寫出所有滿足條件的點En的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】七年級學生在5 名教師的帶領下去動物園秋游,動物園的門票為每 人40 元,現(xiàn)有兩種優(yōu)惠方案,甲方案:帶隊教師免費,學生按8 折收費;乙 方案:師生都7.5 折收費.
(1)若有m 名學生,用含m 的式子表示兩種優(yōu)惠方案各需多少元?
(2)當m=70 時,采用哪種方案優(yōu)惠?
(3)當m=100 時,采用哪種方案優(yōu)惠?
查看答案和解析>>
科目: 來源: 題型:
【題目】在實數(shù)范圍內定義一種運算“*”,其運算法則為a*b=a2﹣ab.根據(jù)這個法則,下列結論中正確的是_______.(把所有正確結論的序號都填在橫線上)
①*=2﹣;②若a+b=0,則a*b=b*a;③(x+2)*(x+1)=0是一元二次方程;④方程(x+3)*1=1的根是x1=,x2=.
查看答案和解析>>
科目: 來源: 題型:
【題目】教材第九章中探索乘法公式時,設置由圖形面積的不同表示方法驗證了乘法公式.我國著名的數(shù)學家趙爽,早在公元3世紀,就把一個矩形分成四個全等的直角三角形,用四個全等的直角三角形拼成了一個大的正方形(如圖①),這個圖形稱為趙爽弦圖,驗證了一個非常重要的結論:在直角三角形中兩直角邊a、b與斜邊c滿足關系式a2+b2=c2,稱為勾股定理.
(1)愛動腦筋的小明把這四個全等的直角三角形拼成了另一個大的正方形(如圖②),也能驗證這個結論,請你幫助小明完成驗證的過程.
(2)小明又把這四個全等的直角三角形拼成了一個梯形(如圖③),利用上面探究所得結論,求當a=3,b=4時梯形ABCD的周長.
(3)如圖④,在每個小正方形邊長為1的方格紙中,△ABC的頂點都在方格紙格點上.請在圖中畫出△ABC的高BD,利用上面的結論,求高BD的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,池塘邊有一塊長為18m,寬為10m的長方形土地,現(xiàn)在將其 余三面留出寬都是xm的小路,中間余下的長方形部分做菜地,用整式表示:
(1)菜地的長a= m,寬b= m;
(2)菜地面積S= m2;
(3)當x=0.5m時,菜地面積是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC,AB=4cm,線段AB上一動點D,以1cm/s的速度從點A出發(fā)向終點B運動.過點D作DE⊥AB,交折線AC﹣CB于點E,以DE為一邊,在DE左側作正方形DEFG.設運動時間為x(s)(0<x<4).正方形DEFG與△ABC重疊部分面積為y(cm2).
(1)當x=s時,點F在AC上;
(2)求y關于x的函數(shù)解析式,并寫出自變量x的取值范圍;
(3)設正方形DEFG的中心為點O,直接寫出運動過程中,直線BO平分△ABC面積時,自變量x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com