科目: 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E在對角線AC上,點(diǎn)F在邊BC上,連接BE、DF,DF交對角線AC于點(diǎn)G,且DE=DG.
(1)求證:AE=CG;
(2)試判斷BE和DF的位置關(guān)系,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】定義新運(yùn)算:對于任意實(shí)數(shù)a,b,都有a⊕b=a(a﹣b)+1,等式右邊是通常的加法,減法及乘法運(yùn)算.比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5
(1)求3⊕(﹣2)的值;
(2)若3⊕x的值小于16,求x的取值范圍,并在數(shù)軸上表示出來.
查看答案和解析>>
科目: 來源: 題型:
【題目】我們給出如下定義:順次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形.
(1)如圖1,四邊形ABCD中,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn).求證:中點(diǎn)四邊形EFGH是平行四邊形;
(2)如圖2,點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),且滿足PA=PB,PC=PD,∠APB=∠CPD,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn),猜想中點(diǎn)四邊形EFGH的形狀,并證明你的猜想;
(3)若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點(diǎn)四邊形EFGH的形狀.(不必證明)
查看答案和解析>>
科目: 來源: 題型:
【題目】計(jì)算.
(1)( x-y)7÷(y-x)2÷( x-y)3;
(2) ++;
(3)( -2)0- ++ ·;
(4) a4m+1÷(-a) 2m+1 (m為正整數(shù)).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點(diǎn)P是定線段OA上的動點(diǎn),點(diǎn)P從O點(diǎn)出發(fā),沿線段OA運(yùn)動至點(diǎn)A后,再立即按原路返回至點(diǎn)O停止,點(diǎn)P在運(yùn)動過程中速度大小不變,以點(diǎn)O為圓心,線段OP長為半徑作圓,則該圓的周長l與點(diǎn)P的運(yùn)動時(shí)間t之間的函數(shù)圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,C=90°,BD是角平分線,點(diǎn)O在AB上,以點(diǎn)O為圓心,OB為半徑的圓經(jīng)過點(diǎn)D,交BC于點(diǎn)E.
(1)求證:AC是⊙O的切線;
(2)若OB=10,CD=8,求AD的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】根據(jù)不等式的基本性質(zhì),把下列不等式化成“x>a”或“x<a”的形式:
(1)4x>3x+5 (2)-2x<17
(3)0.3x<-0.9 (4)x<x-4
查看答案和解析>>
科目: 來源: 題型:
【題目】現(xiàn)計(jì)劃把甲種貨物1240噸和乙種貨物880噸用一列貨車運(yùn)往某地,已知這列貨車掛在A、B兩種不同規(guī)格的貨車廂共40節(jié),使用A型車廂每節(jié)費(fèi)用為6000元,使用B型車廂每節(jié)費(fèi)用為8000元.
(1)設(shè)運(yùn)送這批貨物的總費(fèi)用為y萬元,這列貨車掛A型車廂x 節(jié),試定出用車廂節(jié)數(shù)x表示總費(fèi)用y的公式.
(2)如果每節(jié)A型車廂最多可裝甲種貨物35噸和乙種貨物15噸,每節(jié)B型車廂最多可裝甲種貨物25噸和乙種貨物35噸,裝貨時(shí)按此要求安排A、B兩種車廂的節(jié)數(shù),那么共有哪幾種安排車廂的方案?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com