相關習題
 0  352231  352239  352245  352249  352255  352257  352261  352267  352269  352275  352281  352285  352287  352291  352297  352299  352305  352309  352311  352315  352317  352321  352323  352325  352326  352327  352329  352330  352331  352333  352335  352339  352341  352345  352347  352351  352357  352359  352365  352369  352371  352375  352381  352387  352389  352395  352399  352401  352407  352411  352417  352425  366461 

科目: 來源: 題型:

【題目】如圖,圖中的小方格都是邊長為1的正方形,△ABC的A,B,C三點坐標為A(2,0)、B(2,2)、C(6,3)。

(1)請在圖中畫出一個△ ,使△ 與△ABC是以坐標原點為位似中心,相似比為2的位似圖形。
(2)求△ 的面積。

查看答案和解析>>

科目: 來源: 題型:

【題目】某數(shù)學興趣小組研究我國古代《算法統(tǒng)宗》里這樣一首詩:我問開店李三公,眾客都來到店中,一房七客多七客,一房九客一房空.詩中后兩句的意思是:如果每一間客房住7人,那么有7人無房可;如果每一間客房住9人,那么就空出一間房.

(1)求該店有客房多少間?房客多少人?

(2)假設店主李三公將客房進行改造后,房間數(shù)大大增加.每間客房收費20錢,且每間客房最多入住4人,一次性定客房18間以上(含18間),房費按8折優(yōu)惠.若詩中“眾客”再次一起入住,他們?nèi)绾斡喎扛纤悖?/span>

查看答案和解析>>

科目: 來源: 題型:

【題目】(1) 定義:直角三角形兩直角邊的平方和等于斜邊的平方.如:直角三角形的直角邊分別為3、4,則斜邊的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接寫出BC2=__________________

(2)應用:已知正方形ABCD的邊長為4,點PAD邊上的一點,AP= ,請利用“兩點之間線段最短”這一原理,在線段AC上畫出一點M,使MP+MD最小,并直接寫出最小值的平方為_____________

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,平行四邊形ABCD中,∠B=30°,AB≠BC ,將△ABC沿AC翻折至△AB′C ,連結B ′D. 若 ,∠AB ′D=75°,則BC=

查看答案和解析>>

科目: 來源: 題型:

【題目】已知拋物線y=ax2+bx+c與x軸交于A,B兩點,頂點C的縱坐標為-2,現(xiàn)將拋物線向右平移2個單位,得到拋物線y=a1x2+b1x+c1 , 則下列結論正確的是 . (寫出所有正確結論的序號)①b>0;②a-b+c<0;③陰影部分的面積為4;④若c=-1,則b2=4a.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,某中學有一塊四邊形的空地ABCD,學校計劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3m,BC=12mCD=13m,DA=4m,若每平方米草皮需要200元,問學校需要投入多少資金買草皮?

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E 、F ,連結BD 、DP ,BD與CF相交于點H. 給出下列結論:①△BDE ∽△DPE;② ;③DP 2=PH ·PB; ④ . 其中正確的是( ).

A.①②③④
B.①②④
C.②③④
D.①③④

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,雙曲線y= 經(jīng)過點A(1,2),過點A作y軸的垂線,垂足為B,交雙曲線y=﹣ 于點C,直線y=m(m≠0)分別交雙曲線y=﹣ 、y= 于點P、Q.

(1)求k的值;
(2)若△OAP為直角三角形,求點P的坐標;
(3)△OCQ的面積記為SOCQ , △OAP的面積記為S△OAP,試比較SOCQ與SOAP的大。ㄖ苯訉懗鼋Y論).

查看答案和解析>>

科目: 來源: 題型:

【題目】解方程(組)

(1)11x﹣3=x+2

(2)

(3)

(4)

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖(1),E是直線AB、CD內(nèi)部一點,AB∥CD,連接EA、ED.

(1)探究:

①若∠A=30°,∠D=40°,則∠AED等于多少度?

②若∠A=20°,∠D=60°,則∠AED等于多少度?

③在圖(1)中∠AED、∠EAB、∠EDC有什么數(shù)量關系,并證明你的結論.

(2)拓展:如圖(2),射線FE與矩形ABCD的邊AB交于點E,與邊CD交于點F,①②③④分別是被射線FE隔開的四個區(qū)域(不含邊界,其中③④位于直線AB的上方),P是位于以上四個區(qū)域上點,猜想:∠PEB、∠PFC、∠EPF之間的關系.(不要求證明)

查看答案和解析>>

同步練習冊答案