科目: 來源: 題型:
【題目】如圖,一小球從斜坡D點處拋出,球的拋出路線可以用二次函數(shù))y=-x2+4x刻畫,斜坡OA可以用一次函數(shù)y=刻畫.
(1)請用配方法求二次函數(shù)圖象的最高點P的坐標;
(2)小球的落點是A,求點A的坐標
(3)連接拋物線的最高點P與點O、A得△POA,求△POA的面積;
(4)在OA上方的拋物線上存在一點M(M與P不重合),△MOA的面積等于△POA的面積,請直接寫出點M的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】一副三角板如圖擺放,點F是 45°角三角板△ABC的斜邊的中點,AC=4.當 30°角三角板DEF的直角頂點繞著點F旋轉(zhuǎn)時,直角邊DF,EF分別與AC,BC相交于點 M, N.在旋轉(zhuǎn)過程中有以下結(jié)論:①MF=NF;②CF與MN可能相等嗎;③MN 長度的最小值為 2;④四邊形CMFN的面積保持不變; ⑤△CMN面積的最大值為 2.其中正確的個數(shù)是_________.(填寫序號).
查看答案和解析>>
科目: 來源: 題型:
【題目】請將下列證明過程補充完整:
已知:如圖,AE平分∠BAC,CE平分∠ACD,且∠α+∠β=90°.
求證:AB∥CD.
證明:∵CE平分∠ACD (已知),
∴∠ACD=2∠α(______________________)
∵AE平分∠BAC (已知),
∴∠BAC=_________(______________________)
∵∠α+∠β=90°(已知),
∴2∠α+2∠β=180°(等式的性質(zhì))
∴∠ACD+∠BAC==_________(______________________)
∴AB∥CD.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了解某校八年級體育科目訓練情況,從八年級學生中隨機抽取了部分學生進行了一次體育科目測試(把測試結(jié)果分為四個等級:A級:優(yōu)秀;B級:良好;C級:及格;D級:不及格),并將測試結(jié)果繪成了如下兩幅不完整的統(tǒng)計圖請根據(jù)統(tǒng)計圖中的信息解答下列問題:
(1)圖1中的度數(shù)是__________,并把圖2條形統(tǒng)計圖補充完整.
(2)抽取的這部分的學生的體育科目測試結(jié)果的中位數(shù)是在__________級;
(3)依次將優(yōu)秀、良好、及格、不及格記為90分、80分、70分、50分,請計算抽取的這部分學生體育的平均成績.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知△ABC 中,AD 是∠BAC 的平分線,且 AD=AB,過點 C 作 AD 的垂線,交 AD 的延長線于點 H.
(1)如圖 1,若∠BAC=60°.
①直接寫出∠B 和∠ACB 的度數(shù);
②若 AB=2,求 AC 和 AH 的長;
(2)如圖 2,用等式表示線段 AH 與 AB+AC 之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)自主閱讀:在三角形的學習過程,我們知道三角形一邊上的中線將三角形分成了兩個面積相等三角形,原因是兩個三角形的底邊和底邊上的高都相等,在此基礎(chǔ)上我們可以繼續(xù)研究:如圖1,AD∥BC,連接AB,AC,BD,CD,則S△ABC=S△BCD.
證明:分別過點A和D,作AF⊥BC于F.DE⊥BC于E,由AD∥BC,可得AF=DE,又因為S△ABC=×BC×AF,S△BCD=×BC×DE .
所以S△ABC=S△BCD
由此我們可以得到以下的結(jié)論:像圖1這樣.
(2)問題解決:如圖2,四邊形ABCD中,AB∥DC,連接AC,過點B作BE∥AC,交DC延長線于點E,連接點A和DE的中點P,請你運用上面的結(jié)論證明:SABCD=S△APD
(3)應(yīng)用拓展:
如圖3,按此方式將大小不同的兩個正方形放在一起,連接AF,CF,若大正方形的面積是80cm2,則圖中陰影三角形的面積是 cm2.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知反比例函數(shù)的圖象經(jīng)過點A(1,3).
(1)試確定此反比例函數(shù)的解析式;
(2)當=2時, 求y的值;
(3)當自變量從5增大到8時,函數(shù)值y是怎樣變化的?
查看答案和解析>>
科目: 來源: 題型:
【題目】快遞公司為提高快遞分揀的速度,決定購買機器人來代替人工分揀.已知購買甲型機器人1臺,乙型機器人2臺,共需14萬元;購買甲型機器人2臺,乙型機器人3臺,共需24萬元.
(1)求甲、乙兩種型號的機器人每臺的價格各是多少萬元;
(2)已知甲型和乙型機器人每臺每小時分揀快遞分別是1200件和1000件,該公司計劃最多用41萬元購買8臺這兩種型號的機器人,則該公司該如何購買,才能使得每小時的分揀量最大?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.網(wǎng)格中有一個格點△ABC(即三角形的頂點都在格點上).
(1)在圖中作出△ABC關(guān)于直線l對稱的△A1B1C1 (要求A與A1,B與B1,C與C1相對應(yīng));
(2)求△ABC的面積;
(3)在直線l上找一點P,使得△PAC的周長最。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AD為等邊△ABC的高,E、F分別為線段AD、AC上的動點,且AE=CF,當BF+CE取得最小值時,∠AFB=( 。
A. 112.5°B. 105°C. 90°D. 82.5°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com