相關習題
 0  353610  353618  353624  353628  353634  353636  353640  353646  353648  353654  353660  353664  353666  353670  353676  353678  353684  353688  353690  353694  353696  353700  353702  353704  353705  353706  353708  353709  353710  353712  353714  353718  353720  353724  353726  353730  353736  353738  353744  353748  353750  353754  353760  353766  353768  353774  353778  353780  353786  353790  353796  353804  366461 

科目: 來源: 題型:

【題目】某市在精準扶貧活動中,因地制宜指導農(nóng)民調(diào)整種植結構,增加種植效益.2018年李大伯家在工作隊的幫助下,計劃種植馬鈴薯和蔬菜共15畝,預計每畝的投入與產(chǎn)出如下表:(1)如果這15畝地的純收入要達到54900元,需種植馬鈴薯和蔬菜各多少畝?(2)如果總投入不超過16000元,則最多種植蔬菜多少畝?該情況下15畝地的純收入是多少?

投入(元)

產(chǎn)出(元)

馬鈴薯

1000

4500

蔬菜

1200

5300

查看答案和解析>>

科目: 來源: 題型:

【題目】發(fā)現(xiàn)任意三個連續(xù)的整數(shù)中,最大數(shù)與最小數(shù)這兩個數(shù)的平方差是4的倍數(shù);

驗證:(1 的結果是4的幾倍?

2)設三個連續(xù)的整數(shù)中間的一個為n,計算最大數(shù)與最小數(shù)這兩個數(shù)的平方差,并說明它是4的倍數(shù);

延伸:說明任意三個連續(xù)的奇數(shù)中,最大的數(shù)與最小的數(shù)這兩個數(shù)的平方差是8的倍數(shù).

查看答案和解析>>

科目: 來源: 題型:

【題目】中國數(shù)學史上最先完成勾股定理證明的數(shù)學家是公元3世紀三國時期的趙爽,他為了證明勾股定理,創(chuàng)制了一副弦圖,后人稱其為趙爽弦圖(如圖1).圖2由弦圖變化得到,它是由八個全等的直角三角形拼接而成. 將圖中正方形MNKT,正方形EFGH,正方形ABCD的面積分別記為,, , 則正方形EFGH的面積為_______

查看答案和解析>>

科目: 來源: 題型:

【題目】α,β是方程x2+2x2005=0的兩個實數(shù)根,則α2+3α+β的值為(  )

A. 2005B. 2003C. 2005D. 4010

查看答案和解析>>

科目: 來源: 題型:

【題目】邊長為4的等邊與等邊互相重合,將沿直線L向左平移m個單位長度,將向右也平移m個單位長度,若,則m=________;若C、E是線段BF的三等分點時,m=________.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖1,已知點A-20).點Dy軸上,連接AD并將它沿x軸向右平移至BC的位置,且點B坐標為(4,0),連接CDOD=AB

1)線段CD的長為 ,點C的坐標為

2)如圖2,若點M從點B出發(fā),以1個單位長度/秒的速度沿著x軸向左運動,同時點N從原點O出發(fā),以相同的速度沿折線OD→DC運動(當N到達點C時,兩點均停止運動).假設運動時間為t秒.

t為何值時,MNy軸;

②求t為何值時,SBCM=2SADN

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖1.直線AD∥EF,點B,C分別在EFAD上,∠A=∠ABC,BD平分∠CBF

1)求證:AB⊥BD;

2)如圖2BG⊥AD于點G,求證:∠ACB=2∠ABG

3)在(2)的條件下,如圖3CH平分∠ACBBG于點H,設∠ABG=α,請直接寫出∠BHC的度數(shù).(用含α的式子表示)

查看答案和解析>>

科目: 來源: 題型:

【題目】“友誼商場”某種商品平均每天可銷售100件,每件盈利20元.“五一”期間,商場決定采取適當?shù)慕祪r措施.經(jīng)調(diào)查發(fā)現(xiàn),每件該商品每降價1元,商場平均每天可多售出10件.設每件商品降價x元.據(jù)此規(guī)律,請回答:

(1)降價后每件商品盈利   元,商場日銷售量增加   件 (用含x的代數(shù)式表示);

(2)在上述條件不變的情況下,求每件商品降價多少元時,商場日盈利最大,最大值是多少?

查看答案和解析>>

科目: 來源: 題型:

【題目】有大小兩種貨車,3輛大貨車與2輛小貨車一次可以運貨21噸,2輛大貨車與4輛小貨車一次可以運貨22噸.

1)每輛大貨車和每輛小貨車一次各可以運貨多少噸?

2)現(xiàn)有這兩種貨車共10輛,要求一次運貨不低于35噸,則其中大貨車至少多少輛?(用不等式解答)

3)日前有23噸貨物需要運輸,欲租用這兩種貨車運送,要求全部貨物一次運完且每輛車必須裝滿.已知每輛大貨車一次運貨租金為300元,每輛小貨車一次運貨租金為200元,請列出所有的運輸方案井求出最少租金.

查看答案和解析>>

科目: 來源: 題型:

【題目】將一個有45°角的三角板的直角頂點放在一張寬為3cm的紙帶邊沿上,另一個頂

點在紙帶的另一邊沿上,測得三角板的一邊與紙帶的一邊所在的直線成30°角,如圖(3),

則三角板的最大邊的長為( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案