科目: 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點(diǎn),過點(diǎn)A作BC的平行線交BE的延長線于點(diǎn)F,連接CF.
(1)求證:AF=DC;
(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論;
(3)在(2)的條件下,要使四邊形ADCF為正方形,在△ABC中應(yīng)添加什么條件,請(qǐng)直接把補(bǔ)充條件寫在橫線上 (不需說明理由).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:順次連接矩形各邊的中點(diǎn),得到一個(gè)菱形,如圖①;再順次連接菱形各邊的中點(diǎn),得到一個(gè)新的矩形.如圖②;然后順次連接新的矩形各邊的中點(diǎn),得到一個(gè)新的菱形,如圖③;如此反復(fù)操作下去,則第3個(gè)圖形中直角三角形的個(gè)數(shù)有______個(gè),第2018個(gè)圖形中直角三角形的個(gè)數(shù)有______個(gè).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在一條筆直公路BD的正上方A處有一探測(cè)儀,AD=24m,∠D=90°,一輛轎車從B點(diǎn)勻速向D點(diǎn)行駛,測(cè)得∠ABD=31°,2秒后到達(dá)C點(diǎn),測(cè)得∠ACD=50°.
(Ⅰ)求B,C兩點(diǎn)間的距離(結(jié)果精確到1m);
(Ⅱ)若規(guī)定該路段的速度不得超過15m/s,判斷此轎車是否超速.
參考數(shù)據(jù):tan31°≈0.6,tan50°≈1.2.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點(diǎn)E、F分別是正方形ABCD的邊CD、AD上的點(diǎn),且CE=DF,AE、BF相交于點(diǎn)O,下面四個(gè)結(jié)論:(1)AE=BF,(2)AE⊥BF,(3)AO=OE,(4)S△AOB=S四邊形DEOF,其中正確結(jié)論的序號(hào)是 .
查看答案和解析>>
科目: 來源: 題型:
【題目】數(shù)學(xué)是一門充滿樂趣的學(xué)科,某校七年級(jí)小凱同學(xué)的數(shù)學(xué)學(xué)習(xí)小組遇到一個(gè)富有挑戰(zhàn)性的探究問題,請(qǐng)你幫助他們完成整個(gè)探究過程;
(問題背景)
對(duì)于一個(gè)正整數(shù),我們進(jìn)行如下操作:
(1)將拆分為兩個(gè)正整數(shù),的和,并計(jì)算乘積;
(2)對(duì)于正整數(shù),,分別重復(fù)此操作,得到另外兩個(gè)乘積;
(3)重復(fù)上述過程,直至不能再拆分為止,(即拆分到正整數(shù)1);
(4)將所有的乘積求和,并將所得的數(shù)值稱為該正整數(shù)的“神秘值”,請(qǐng)?zhí)骄坎煌牟鸱址绞绞欠裼绊懻麛?shù)的“神秘值”,并說明理由.
(嘗試探究):
(1)正整數(shù)2的“神秘值”是_________;
(2)為了研究一般的規(guī)律,小凱所在學(xué)習(xí)小組通過討論,決定再選擇兩個(gè)具體的正整數(shù)6和7,重復(fù)上述過程
探究結(jié)論:
如圖1所示,是小凱選擇的一種拆分方式,通過該拆分方法得到正整數(shù)6的“神秘值”為15.
請(qǐng)模仿小凱的計(jì)算方式,在圖2中,選擇另外一種拆分方式,給出計(jì)算正整數(shù)6的“神秘值”的過程;對(duì)于正整數(shù)7,請(qǐng)選擇一種拆分方式,在圖3中給出計(jì)算正整數(shù)7的“神秘值”的過程.
(結(jié)論猜想)
結(jié)合上面的實(shí)踐活動(dòng),進(jìn)行更多的嘗試后,小凱所在學(xué)習(xí)小組猜測(cè),正整數(shù)的“神秘值”與其拆分方法無關(guān).請(qǐng)幫助小凱,利用嘗試成果,猜想正整數(shù)的“神秘值”的表達(dá)式為________.(用含字母的代數(shù)式表示,直接寫出結(jié)果)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,一只甲蟲在的方格(每小格邊長為1)上沿著網(wǎng)格線運(yùn)動(dòng),他從處出發(fā)去看望、、處的其他甲蟲,規(guī)定:向上向右走均為正,向下向左走均為負(fù),如果從到記為,從到記為:,其中第一個(gè)數(shù)表示左右方向,第二個(gè)數(shù)表示上下方向.
(1)圖中{_______,_________},{_______,_________};
(2)若這只甲蟲的行走路線為,請(qǐng)計(jì)算該甲蟲走過的最短路程.
(3)若圖中另有兩個(gè)格點(diǎn)、,且,,則應(yīng)記為什么?直接寫出你的答案.
查看答案和解析>>
科目: 來源: 題型:
【題目】四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,給出下列四組條件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC。其中一定能判斷這個(gè)四邊形是平行四邊形的條件共有
A. 1組 B. 2組 C. 3組 D. 4組
查看答案和解析>>
科目: 來源: 題型:
【題目】定理描述
(1)如圖1,用文字語言或符號(hào)語言敘述三角形中位線性質(zhì)定理的內(nèi)容.
.
證法回顧
證明三角形中位線性質(zhì)定理的方法很多,但多數(shù)都需要通過添加輔助線構(gòu)圖去完成.下列是其中一種證法的添加輔助線方法:
添加輔助線,如圖2,在△ABC中,過點(diǎn)C作CF∥AB,與DE的延長線交于點(diǎn)F.
(2)上述證法中,證明三角形中位線定理中的DE∥BC的依據(jù)是( )
A.同位角相等,兩直線平行.
B.平行四邊形對(duì)邊平行.
C.同旁內(nèi)角互補(bǔ),兩直線平行.
D.平行于同一條直線的兩條直線互相平行
拓展延伸
(3)利用證明三角形中位線定理獲得的經(jīng)驗(yàn)解決下面的問題:
如圖3,在△ABC中,∠B=45°,AB=10,BC=8,DE是△ABC的中位線,過點(diǎn)D、E作DF∥EG,分別交BC于F、G,過點(diǎn)A作MN∥BC,分別與FD、GE的延長線交于M、N,則四邊形MFGN周長的最小值是
查看答案和解析>>
科目: 來源: 題型:
【題目】在多項(xiàng)式中,表示這個(gè)多項(xiàng)式的項(xiàng)數(shù),表示這個(gè)多項(xiàng)式中三次項(xiàng)的系數(shù).在數(shù)軸上點(diǎn)與點(diǎn)所表示的數(shù)恰好可以用與分別表示.有一個(gè)動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒2個(gè)單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒.
(1)________,___________,線段_________個(gè)單位長度;
(2)點(diǎn)所表示數(shù)是________(用含的多項(xiàng)式表示);
(3)求當(dāng)為多少時(shí),線段的長度恰好是線段長度的三倍?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com