科目: 來源: 題型:
【題目】某愛心企業(yè)在政府的支持下投入資金,準備修建一批室外簡易的足球場和籃球場,供市民免費使用,修建1個足球場和1個籃球場共需8.5萬元,修建2個足球場和4個籃球場共需27萬元.
(1)求修建一個足球場和一個籃球場各需多少萬元?
(2)該企業(yè)預計修建這樣的足球場和籃球場共20個,投入資金不超過90萬元,求至少可以修建多少個足球場?
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀下面的題目及分析過程.已知:如圖點是的中點,點在上,且
原圖 ① ②
說明:
說明兩個角相等,常用的方法是應(yīng)用全等三角形或等腰三角形的性質(zhì).觀察本題中說明的兩個角,它們既不在同一個三角形中,而且們所在兩個三角形也不全等.因此,要說明,必須添加適當?shù)妮o助線,構(gòu)造全等三角形或等腰三角形,現(xiàn)在提供兩種添加輔加線的方法如下:
如圖①過點作,交的延長線于點.
如圖②延長至點,使,連接.
(1)請從以上兩種輔助線中選擇一種完成上題的說理過程.
(2)在解決上述問題的過程中,你用到了哪種數(shù)學思想?請寫出一個._______________.
(3)反思應(yīng)用:
如圖,點是的中點,于點.
請類比(1)中解決問題的思想方法,添加適當?shù)妮o助線,判斷線段與之間的大小關(guān)系,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】先化簡再求值:
(1)(x+y)(xy)(4x3y4xy3)÷2xy,其中x=1,y=.
(2)實數(shù)x滿足x22x2=0,求代數(shù)式(2x1)2x(x+4)+(x3)(x+3)的值。
查看答案和解析>>
科目: 來源: 題型:
【題目】前幾天,在青島召開了舉世目的“上合”會議,會議之前需要印刷批宣傳彩頁.經(jīng)招標,印務(wù)公司中標,該印務(wù)公司給出了三種方案供主辦方選擇:
方案一:每份彩頁收印刷費元.
方案二:收制版費元,外加每份彩頁收印刷費元.
方案三:印數(shù)在份以內(nèi)時,每份彩頁收印刷費元,超過份時,超過部分按每份元收費.
(1)分別寫出各方案的收費(元)與印刷彩頁的份數(shù)(份)之間的關(guān)系式.
(2)若預計要印刷份的宣傳彩頁,請你幫主辦方選擇一種合算的方案.
查看答案和解析>>
科目: 來源: 題型:
【題目】在長方形紙片ABCD中,AB=m,AD=n,將兩張邊長分別為6和4的正方形紙片按圖1,圖2兩種方式放置(圖1,圖2中兩張正方形紙片均有部分重疊),長方形中未被這兩張正方形紙片覆蓋的部分用陰影表示,設(shè)圖1中陰影部分的面積為S1,圖2中陰影部分的面積為S2.
(1)在圖1中,EF=___,BF=____;(用含m的式子表示)
(2)請用含m、n的式子表示圖1,圖2中的S1,S2,若m-n=2,請問S2-S1的值為多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】甲.乙兩同學騎自行車從A地沿同一條路到B地,已知乙比甲先出發(fā),他們離出發(fā)地的距離S(km)和騎行時間t(h)之間的函數(shù)關(guān)系如圖1所示,給出下列說法:①他們都騎行了20km;②乙在途中停留了0.5h;③甲.乙兩人同時到達目的地;④相遇后,甲的速度小于乙的速度.
根據(jù)圖象信息,以上說法正確的有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,AB∥CD,∠A = ∠D,試說明 AC∥DE 成立的理由.
下面是彬彬同學進行的推理,請你將彬彬同學的推理過程補充完整。
解:∵ AB ∥ CD (已知)
∴ ∠A = (兩直線平行,內(nèi)錯角相等)
又∵ ∠A = ∠D( )
∴ ∠ = ∠ (等量代換)
∴ AC ∥ DE ( )
查看答案和解析>>
科目: 來源: 題型:
【題目】某青春黨支部在精準扶貧活動中,給結(jié)對幫扶的貧困家庭贈送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價格比甲種樹苗貴10元,用480元購買乙種樹苗的棵數(shù)恰好與用360元購買甲種樹苗的棵數(shù)相同.
(1)求甲、乙兩種樹苗每棵的價格各是多少元?
(2)在實際幫扶中,他們決定再次購買甲、乙兩種樹苗共50棵,此時,甲種樹苗的售價比第一次購買時降低了10%,乙種樹苗的售價不變,如果再次購買兩種樹苗的總費用不超過1500元,那么他們最多可購買多少棵乙種樹苗?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c的頂點坐標為(2,9),與y軸交于點A(0,5),與x軸交于點E、B.
(1)求二次函數(shù)y=ax2+bx+c的表達式;
(2)過點A作AC平行于x軸,交拋物線于點C,點P為拋物線上的一點(點P在AC上方),作PD平行于y軸交AB于點D,問當點P在何位置時,四邊形APCD的面積最大?并求出最大面積;
(3)若點M在拋物線上,點N在其對稱軸上,使得以A、E、N、M為頂點的四邊形是平行四邊形,且AE為其一邊,求點M、N的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AD=2,AB=2,以點A為圓心,AD為半徑的圓與BC相切于點E,交AB于點F.
(1)求∠ABE的大小及弧DEF的長度;
(2)在BE的延長線上取一點G,使得弧DE上的一個動點P到點G的最短距離為2-2,求BG的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com