科目: 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,已知A(2,2)、B(﹣2,0)、C(﹣1,﹣2).
(1)在平面直角坐標系中畫出△ABC;
(2)若點D與點C關于y軸對稱,則點D的坐標為 ;
(3)求△ABC的面積;
(4)已知點P為x軸上一點,若S△ABP=5時,求點P的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀下列材料:
情形展示:
情形一:如圖,在中,沿等腰三角形ABC的頂角的平分線折疊,若點B與點C重合,則稱是的“好角”,如圖,在中,先沿的平分線折疊,剪掉重復部分,再將余下部分沿的平分線折疊,若點與點C重合,則稱是的“好角”.
情形二:如圖,在中,先沿的平分線折疊,剪掉重復部分,再將余下部分沿的平分線折疊,剪掉重復部分重復折疊n次,最終若點與點C重合,則稱是的“好角”,探究發(fā)現:不妨設
如圖,若是的“好角”,則與的數量關系是:______.
如圖,若是的“好角”,則與的數量關系是:______.
如圖,若是的“好角”,則與的數量關系是:______.
應用提升:
如果一個三角形的三個角分別為,,,我們發(fā)現和的兩個角都是此三角形的“好角”;如果有一個三角形,它的三個角均是此三角形的“好角”,且已知最小的角是,求另外兩個角的度數.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC 中,點 D、E 分別在 BC、AC 上且 BD=CE,AD=DE, ∠C =∠ADE, 則∠B =∠C,試填寫說理過程.
解因為∠EDB =∠C+∠DEC( )
即∠ADB+∠ADE =∠C+∠DEC
因為∠C =∠ADE( )
所以∠ =∠ (等式性質)
在△ABD 與△DCE 中,
所以△ABD ≌ △DCE( )
所以∠B =∠C( )
查看答案和解析>>
科目: 來源: 題型:
【題目】圖中是拋物線拱橋,P處有一照明燈,點P到水面OA的距離為,從O、A兩處觀測P處,仰角分別為,,且,,以O為原點,OA所在直線為x軸建立直角坐標系,已知拋物線方程為.
求拋物線方程,并求拋物線上的最高點到水面的距離;
水面上升1m,水面寬多少取,結果精確到?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知AD∥BC,∠A=∠C=50°,線段AD上從左到右依次有兩點E、F(不與A、D重合)
(1)AB與CD是什么位置關系,并說明理由;
(2)觀察比較∠1、∠2、∠3的大小,并說明你的結論的正確性;
(3)若∠FBD:∠CBD=1:4,BE平分∠ABF,且∠1=∠BDC,求∠FBD的度數,判斷BE與AD是何種位置關系?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正方形ABCD中,點E,F分別在邊,AD,CD上,且,BD和EF交于點O,延長BD至點H,使得,并連接HE,HF.
求證:;
試判斷四邊形BEHF是什么特殊的四邊形,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com