科目: 來源: 題型:
【題目】某地下車庫出口處安裝了“兩段式欄桿”,如圖1所示,點A是欄桿轉(zhuǎn)動的支點,點E是欄桿兩段的聯(lián)結(jié)點.當(dāng)車輛經(jīng)過時,欄桿AEF最多只能升起到如圖2所示的位置,其示意圖如圖3所示(欄桿寬度忽略不計),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,那么適合該地下車庫的車輛限高標(biāo)志牌為( )(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,一個質(zhì)點在第一象限及x軸、y軸上運動,且每秒移動一個單位,在第1秒鐘,它從原點運動到(0,1),然后接著按圖中箭頭所示方向運動,即(0,0)→(0,1)→(1,1)→(1,0)→…,若經(jīng)過23秒質(zhì)點到達(dá)點A,經(jīng)過33秒質(zhì)點到達(dá)點B,則直線AB的解析式為( )
A.y=x+B.y=﹣x+C.y=2x+9D.y=﹣2x+9
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖①,在△ABC中,∠BAC=90°,AB=AC,直線經(jīng)過點A,且BD⊥l于的D,CE⊥l于的E.
(1)求證:BD+CE=DE;
(2)當(dāng)變換到如圖②所示的位置時,試探究BD、CE、DE的數(shù)量關(guān)系,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC中,CD是∠ACB的角平分線,CE是AB邊上的高,
(1)若∠A=40°,∠B=60°,求∠DCE的度數(shù).
(2)若∠A=m,∠B=n,求∠DCE.(用m、n表示)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖:在△ABC中,BE、CF分別是AC、AB兩邊上的高,在BE上截取BD=AC,在CF的延長線上截取CG=AB,連接AD、AG.
(1)求證:AD=AG;
(2)AD與AG的位置關(guān)系如何,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在Rt△ADE中,∠DAE=90°,C是邊AE上任意一點(點C與點A、E不重合),以AC為一直角邊在Rt△ADE的外部作Rt△ABC,∠BAC=90°,連接BE、CD.
(1)在圖1中,若AC=AB,AE=AD,現(xiàn)將圖1中的Rt△ADE繞著點A順時針旋轉(zhuǎn)銳角α,得到圖2,那么線段BE.CD之間有怎樣的關(guān)系,寫出結(jié)論,并說明理由;
(2)在圖1中,若CA=3,AB=5,AE=10,AD=6,將圖1中的Rt△ADE繞著點A順時針旋轉(zhuǎn)銳角α,得到圖3,連接BD、CE.
①求證:△ABE∽△ACD;
②計算:BD2+CE2的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、C兩點,點A在點C的右邊,與y軸交于點B,點B的坐標(biāo)為(0,﹣3),且OB=OC,點D為該二次函數(shù)圖象的頂點.
(1)求這個二次函數(shù)的解析式及頂點D的坐標(biāo);
(2)如圖,若點P為該二次函數(shù)的對稱軸上的一點,連接PC、PO,使得∠CPO=90°,請求出所有符合題意的點P的坐標(biāo);
(3)在對稱軸上是否存在一點P,使得∠OPC為鈍角,若存在,請直接寫出點P的縱坐標(biāo)為yp的取值范圍,若沒有,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在△ABC中,AC=BC,∠ACB=90°,CE與AB相交于點D,且BE⊥CE,AF⊥CE,垂足分別為點E、F.
(1)若AF=5,BE=2,求EF的長.
(2)如圖2,取AB中點G,連接FC、EC,請判斷△GEF的形狀,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】許多數(shù)學(xué)題目都有多種解法,如題目:如圖,已知,∠MAN=120°,AC平分∠MAN.∠ABC+∠ADC=180°.求證:AB+AD=AC.
某班第二學(xué)習(xí)小組經(jīng)過討論,提出了三種添加輔助線的方法,請你選擇
其中一種方法,完成證明.
方法一:在AN上截取AE=AC,連接CE:
方法二:過點C作CE∥AM交AN于點E
方法三:過點C分別作CE⊥AN于點E,CF⊥AM于點F.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.
(1)若∠DEC=25°,求∠B的度數(shù);
(2)求證:直線AD是線段CE的垂直平分線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com