科目: 來源: 題型:
【題目】拋物線經(jīng)過點A(,0),B(,0),且與y軸相交于點C.
(1)求這條拋物線的表達(dá)式;
(2)求∠ACB的度數(shù);
(3)設(shè)點D是所求拋物線第一象限上一點,且在對稱軸的右側(cè),點E在線段AC上,且DE⊥AC,當(dāng)△DCE與△AOC相似時,求點D的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°.點O是AB的中點,邊AC=6,將邊長足夠大的三角板的直角頂點放在點O處,將三角板繞點0旋轉(zhuǎn),始終保持三角板的直角邊與AC相交,交點為點E,另條直角邊與BC相交,交點為D,則等腰直角三角板的直角邊被三角板覆蓋部分的兩條線段CD與CE的長度之和為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB=3cm,BC=5cm;,BE平分∠ABC,交AD于點E,交CD延長線于點F,則DE+DF的長度為_________.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在等腰Rt△ABC中,∠BAC=90°,點E在AC上(且不與點A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)求證:△AEF是等腰直角三角形;
(2)如圖2,將△CED繞點C逆時針旋轉(zhuǎn),當(dāng)點E在線段BC上時,連接AE,求證:AF=AE;
(3)如圖3,將△CED繞點C繼續(xù)逆時針旋轉(zhuǎn),當(dāng)平行四邊形ABFD為菱形,且△CED在△ABC的下方時,若AB=2,CE=2,求線段AE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】工人小王生產(chǎn)甲、乙兩種產(chǎn)品,生產(chǎn)產(chǎn)品件數(shù)與所用時間之間的關(guān)系如表:
生產(chǎn)甲產(chǎn)品件數(shù)(件) | 生產(chǎn)乙產(chǎn)品件數(shù)(件) | 所用總時間(分鐘) |
10 | 10 | 350 |
30 | 20 | 850 |
(1)小王每生產(chǎn)一件甲種產(chǎn)品和每生產(chǎn)一件乙種產(chǎn)品分別需要多少分鐘?
(2)小王每天工作8個小時,每月工作25天.如果小王四月份生產(chǎn)甲種產(chǎn)品a件(a為正整數(shù)).
①用含a的代數(shù)式表示小王四月份生產(chǎn)乙種產(chǎn)品的件數(shù);
②已知每生產(chǎn)一件甲產(chǎn)品可得1.50元,每生產(chǎn)一件乙種產(chǎn)品可得2.80元,若小王四月份的工資不少于1500元,求a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,分別以Rt△ABC的直角邊AC,斜邊AB為邊向外作等邊三角形△ACD和△ABE,F為AB的中點,連接DF,EF,∠ACB=90°,∠ABC=30°.則以下4個結(jié)論:①AC⊥DF;②四邊形BCDF為平行四邊形;③DA+DF=BE;④其中,正確的 是( 。
A.只有①②B.只有①②③C.只有③④D.①②③④
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,已知一次函數(shù)(k≠0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)(m≠0)的圖象在第一象限交于C點,CD垂直于x軸,垂足為D.若OA=OB=OD=1.
(1)求點A、B、D的坐標(biāo);
(2)求一次函數(shù)和反比例函數(shù)的解析式.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四邊形ABCD中,對角線AC、BD相交于點O,下列條件不能判定四邊形ABCD為平行四邊形的是( 。
A.AB∥CD,AD∥BCB.OA=OC,OB=OD
C.AD=BC,AB∥CDD.AB=CD,AD=BC
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=50cm,BC=30cm,AC=40cm.
(1)求證:∠ACB=90°
(2)求AB邊上的高.
(3)點D從點B出發(fā)在線段AB上以2cm/s的速度向終點A運(yùn)動,設(shè)點D的運(yùn)動時間為t(s).
①BD的長用含t的代數(shù)式表示為 .
②當(dāng)△BCD為等腰三角形時,直接寫出t的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】教材呈現(xiàn):如圖是華師版八年級上冊數(shù)學(xué)教材第94頁的部分內(nèi)容.2.線段垂直平分線.我們已經(jīng)知道線段是軸對稱圖形,線段的垂直平分線是線段的對稱軸,如圖,直線MN是線段AB的垂直平分線,P是MN上任一點,連結(jié)PA、PB,將線段AB沿直線MN對稱,我們發(fā)現(xiàn)PA與PB完全重合,由此即有:線段垂直平分線的性質(zhì)定理 線段垂直平分線上的點到線段的距離相等.已知:如圖,MN⊥AB,垂足為點C,AC=BC,點P是直線MN上的任意一點.求證:PA=PB.圖中有兩個直角三角形APC和BPC,只要證明這兩個三角形全等,便可證明PA=PB.
定理證明:請根據(jù)教材中的分析,結(jié)合圖①,寫出“線段垂直平分線的性質(zhì)定理”完整的證明過程.
定理應(yīng)用:
(1)如圖②,在△ABC中,直線m、n分別是邊BC、AC的垂直平分線,直線m、n的交點為O.過點O作OH⊥AB于點H.求證:AH=BH.
(2)如圖③,在△ABC中,AB=BC,邊AB的垂直平分線l交AC于點D,邊BC的垂直平分線k交AC于點E.若∠ABC=120°,AC=15,則DE的長為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com