科目: 來源: 題型:
【題目】已知拋物線y=-x2+2mx-m2+的頂點(diǎn)為P.
(1)求證:不論m取何值,點(diǎn)P始終在同一個(gè)反比例函數(shù)圖象上?
(2)若拋物線與x軸交于A、B兩點(diǎn),當(dāng)m為何值時(shí),線段AB長等于8?
(3)該拋物線上是否存在一點(diǎn)Q,使得△OPQ是以點(diǎn)P為頂點(diǎn)的等腰直角三角形?若不存在,請(qǐng)說明理由;若存在,請(qǐng)求出m的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】菱形ABCD的邊長為3,∠BAD=60°.
(1)連接AC,過點(diǎn)D作DE⊥AB于點(diǎn)E,DF⊥BC交AC于點(diǎn)F,DE、DF于點(diǎn)M、N.
①依題意補(bǔ)全圖1;
②求MN的長;
(2)如圖2,將(1)中∠EDF以點(diǎn)D為中心,順時(shí)針旋轉(zhuǎn)45°,其兩邊DE′、DF′分別與直線AB、BC相交于點(diǎn)Q、P,連接QP,請(qǐng)寫出求△DPQ的面積的思路.(可以不寫出計(jì)算結(jié)果)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在正方形ABCD外側(cè),作等邊三角形ADE,AC,BE相交于點(diǎn)F,則∠BFC為( )
A. 75°B. 60°C. 55°D. 45°
查看答案和解析>>
科目: 來源: 題型:
【題目】(8分)如圖,AC是⊙O的直徑,OB是⊙O的半徑,PA切⊙O于點(diǎn)A,PB與AC的延長線交于點(diǎn)M,∠COB=∠APB.
(1)求證:PB是⊙O的切線;
(2)當(dāng)OB=3,PA=6時(shí),求MB,MC的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知一次函數(shù)=的圖象經(jīng)過點(diǎn)A(1,0),與反比例函數(shù)=(>0)的圖象相交于點(diǎn)B(2,1).
(1)求的值和一次函數(shù)的解析式;
(2)結(jié)合圖象直接寫出:當(dāng)>0時(shí),不等式>的解集.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,CD為⊙O的直徑,弦AB交CD于點(diǎn)E,連接BD、OB.
(1)求證:△AEC∽△DEB;
(2)若CD⊥AB,AB=8,DE=2,求⊙O的半徑.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,∠A=30°,AC=2.將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)120°得△A′B′C.
(1)求作:△A′B′C;
(2)求點(diǎn)B旋轉(zhuǎn)經(jīng)過的路徑長;
(3)求線段BB′的長;
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線的頂點(diǎn)坐標(biāo)為C(0,8),并且經(jīng)過A(8,0),點(diǎn)P是拋物線上點(diǎn)A,C間的一個(gè)動(dòng)點(diǎn)(含端點(diǎn)),過點(diǎn)P作直線y=8的垂線,垂足為點(diǎn)F,點(diǎn)D,E的坐標(biāo)分別為(0,6),(4,0),連接PD,PE,DE.
(1)求拋物線的解析式;
(2)猜想并探究:對(duì)于任意一點(diǎn)P,PD與PF的差是否為固定值?如果是,請(qǐng)求出此定值;如果不是,請(qǐng)說明理由;
(3)求:①當(dāng)△PDE的周長最小時(shí)的點(diǎn)P坐標(biāo);②使△PDE的面積為整數(shù)的點(diǎn)P的個(gè)數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】某青春黨支部在精準(zhǔn)扶貧活動(dòng)中,給結(jié)對(duì)幫扶的貧困家庭贈(zèng)送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價(jià)格比甲種樹苗貴10元,用480元購買乙種樹苗的棵數(shù)恰好與用360元購買甲種樹苗的棵數(shù)相同.
(1)求甲、乙兩種樹苗每棵的價(jià)格各是多少元?
(2)在實(shí)際幫扶中,他們決定再次購買甲、乙兩種樹苗共50棵,此時(shí),甲種樹苗的售價(jià)比第一次購買時(shí)降低了10%,乙種樹苗的售價(jià)不變,如果再次購買兩種樹苗的總費(fèi)用不超過1500元,那么他們最多可購買多少棵乙種樹苗?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com