科目: 來源: 題型:
【題目】在Rt△ACB中,∠C=90°,點O在AB上,以O為圓心,OA長為半徑的圓與AC,AB分別交于點D,E,且∠CBD=∠A.
(1)判斷直線BD與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若AD∶AO=8∶5,BC=3,求BD的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正方形網(wǎng)格中(每個小正方形的邊長都為1個單位),在平面直角坐標(biāo)系內(nèi),△OBC的頂點B、C分別為B(0,﹣4),C(2,﹣4).
(1)請在圖中標(biāo)出△OBC的外接圓的圓心P的位置,并填寫:圓心P的坐標(biāo)為 ;
(2)畫出△ABC繞點O逆時針旋轉(zhuǎn)90°后的△OB1C1;
(3)在(2)的條件下,求出旋轉(zhuǎn)過程中點C所經(jīng)過分路徑長(結(jié)果保留π).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC是等邊三角形,AB=,點D是邊BC上一點,點H是線段AD上一點,連接BH、CH.當(dāng)∠BHD=60°,∠AHC=90°時,DH=_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】現(xiàn)閱讀下面的材料,然后解答問題:
截長補短法,是初中數(shù)學(xué)幾何題中一種常見輔助線的做法.在證明線段的和、差、倍、分等問題中有著廣泛的應(yīng)用.截長法:在較長的線段上截一條線段等于較短線段,而后再證明剩余的線段與另一段線段相等.補短法:就是延長較短線段與較長線段相等,而后證延長的部分等于另一條線段.
請用截長法解決問題(1)
(1)已知:如圖1等腰直角三角形中,,是角平分線,交邊于點.求證:.
請用補短法解決問題(2)
(2)如圖2,已知,如圖2,在中,,是的角平分線.求證:.
查看答案和解析>>
科目: 來源: 題型:
【題目】“轉(zhuǎn)化”是數(shù)學(xué)中的一種重要思想,即把陌生的問題轉(zhuǎn)化成熟悉的問題,把復(fù)雜的問題轉(zhuǎn)化成簡單的問題,把抽象的問題轉(zhuǎn)化為具體的問題.
(1)請你根據(jù)已經(jīng)學(xué)過的知識求出下面星形圖(1)中∠A+∠B+∠C+∠D+∠E的度數(shù);
(2)若對圖(1)中星形截去一個角,如圖(2),請你求出∠A+∠B+∠C+∠D+∠E+∠F的度數(shù);
(3)若再對圖(2)中的角進一步截去,你能由題(2)中所得的方法或規(guī)律,猜想圖3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度數(shù)嗎?只要寫出結(jié)論,不需要寫出解題過程)
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系中,O為坐標(biāo)原點,A(1,1),在x軸上確定點P,使△AOP為等腰三角形,則符合條件的點P的個數(shù)共有( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,某河的兩岸PQ、MN互相平行,河岸PQ上的點A處和點B處各有一棵大樹,AB=30米,某人在河岸MN上選一點C,AC⊥MN,在直線MN上從點C前進一段路程到達點D,測得∠ADC=30°,∠BDC=60°,求這條河的寬度.(≈1.732,結(jié)果保留三個有效數(shù)字).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com