科目: 來源: 題型:
【題目】如圖,頂點(diǎn)為D的拋物線y=﹣x2+x+4與y軸交于點(diǎn)A,與x軸交于兩點(diǎn)B、C(點(diǎn)B在點(diǎn)C的左邊),點(diǎn)A與點(diǎn)E關(guān)于拋物線的對(duì)稱軸對(duì)稱,點(diǎn)B、E在直線y=kx+b(k,b為常數(shù))上.
(1)求k,b的值;
(2)點(diǎn)P為直線AE上方拋物線上的任意一點(diǎn),過點(diǎn)P作AE的垂線交AE于點(diǎn)F,點(diǎn)G為y軸上任意一點(diǎn),當(dāng)△PBE的面積最大時(shí),求PF+FG+OG的最小值;
(3)在(2)中,當(dāng)PF+FG+OG取得最小值時(shí),將△AFG繞點(diǎn)A按順時(shí)方向旋轉(zhuǎn)30°后得到△AF1G1,過點(diǎn)G1作AE的垂線與AE交于點(diǎn)M.點(diǎn)D向上平移個(gè)單位長度后能與點(diǎn)N重合,點(diǎn)Q為直線DN上任意一點(diǎn),在平面直角坐標(biāo)系中是否存在一點(diǎn)S,使以S、Q、M、N為頂點(diǎn)且MN為邊的四邊形為菱形?若存在,直接寫出點(diǎn)S的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】正方形ABCD和正方形AEFG的邊長分別為2和,點(diǎn)B在邊AG上,點(diǎn)D在線段EA的延長線上,連接BE.
(1)如圖1,求證:DG⊥BE;
(2)如圖2,將正方形ABCD繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn),當(dāng)點(diǎn)B恰好落在線段DG上時(shí),求線段BE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△A1AC1是由△ABC繞某點(diǎn)P按順時(shí)針方向旋轉(zhuǎn)90°得到的,△ABC的頂點(diǎn)坐標(biāo)分A(﹣1,6),B(﹣5,0),C(﹣5,6).
(1)求旋轉(zhuǎn)中心P和點(diǎn)A1,C1的坐標(biāo);
(2)在所給網(wǎng)格中畫出△A1AC1繞點(diǎn)P按順時(shí)針方向旋轉(zhuǎn)90°得到的圖形;
(3)在所給網(wǎng)格中畫出與△A1AC1關(guān)于點(diǎn)P成中心對(duì)稱的圖形.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+bx+c(b,c均為常數(shù))的圖象經(jīng)過兩點(diǎn)A(2,0),B(0,﹣6).
(1)求這個(gè)二次函數(shù)的解析式;
(2)若點(diǎn)C(m,0)(m>2)在這個(gè)二次函數(shù)的圖象上,連接AB,BC,求△ABC的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,平行四邊形ABCD的頂點(diǎn)A在y軸的正半軸上,坐標(biāo)原點(diǎn)O在邊BC上,AD=6,OA、OB的長分別是關(guān)于x的一元二次方程x2﹣7x+12=0的兩個(gè)根.且OA>OB.
(1)求點(diǎn)C、D的坐標(biāo).
(2)求證:射線AO是∠BAC的平分線.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,射線OP與x軸正半軸的夾角為30°,點(diǎn)A是OP上一點(diǎn),過點(diǎn)A作x軸的垂線與x軸交于點(diǎn)E.△AOE繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后能與△BOC重合,△BOC沿著y軸翻折能與△DOC重合,若點(diǎn)D恰好在拋物線y=x2(x>0)上,則點(diǎn)A的坐標(biāo)是_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正方形ABCD的對(duì)角線長為.點(diǎn)E、F分別在正方形ABCD的邊AB、CD上,四邊形EFMG的邊MG分別與正方形ABCD的邊AB、BC交于點(diǎn)H、K,邊MF與正方形ABCD的邊BC交于點(diǎn)N.若四邊形EFDA沿直線EF折疊后能與四邊形EFMG重合,則圖中四個(gè)三角形△EGH、△HBK、△KMN、△NCF的周長的和為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知拋物線的頂點(diǎn)為A(1,4),拋物線與y軸交于點(diǎn)B(0,3),與x軸交于C、D兩點(diǎn).點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn).
(1)求此拋物線的解析式;
(2)求C、D兩點(diǎn)坐標(biāo)及△BCD的面積;
(3)若點(diǎn)P在x軸上方的拋物線上,滿足S△PCD=S△BCD,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC是邊長為3的等邊三角形,將△ABC沿直線BC向右平移,使點(diǎn)B與點(diǎn)C重合,得到△ECD,連接BE,交AC于F.
(1)猜想AC與BE的位置關(guān)系,并證明你的結(jié)論;
(2)求線段BE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F是對(duì)角線BD上兩點(diǎn),且∠EAF=45°,將△ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后,得到△ABQ,連接EQ,求證:
(1)EA是∠QED的平分線;
(2)EF2=BE2+DF2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com