相關(guān)習(xí)題
 0  360681  360689  360695  360699  360705  360707  360711  360717  360719  360725  360731  360735  360737  360741  360747  360749  360755  360759  360761  360765  360767  360771  360773  360775  360776  360777  360779  360780  360781  360783  360785  360789  360791  360795  360797  360801  360807  360809  360815  360819  360821  360825  360831  360837  360839  360845  360849  360851  360857  360861  360867  360875  366461 

科目: 來源: 題型:

【題目】如圖,臺風(fēng)中心位于點(diǎn)A,并沿東北方向AC移動(dòng),已知臺風(fēng)移動(dòng)的速度為50千米/時(shí),受影響區(qū)域的半徑為130千米,B市位于點(diǎn)A的北偏東75°方向上,距離A點(diǎn)240千米處.

1)說明本次臺風(fēng)會影響B市;

2)求這次臺風(fēng)影響B市的時(shí)間.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知y關(guān)于x二次函數(shù)yx2﹣(2k+1x+k2+5k+9)與x軸有交點(diǎn).

1)求k的取值范圍;

2)若x1,x2是關(guān)于x的方程x2﹣(2k+1x+k2+5k+9)=0的兩個(gè)實(shí)數(shù)根,且x12+x2239,求k的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】河上有一座橋孔為拋物線形的拱橋(如圖 ),水面寬 時(shí),水面離橋孔頂部 ,因降暴雨水面上升

(1)建立適當(dāng)?shù)淖鴺?biāo)系,并求暴雨后水面的寬;(結(jié)果保留根號)

(2)一艘裝滿物資的小船,露出水面的部分高為 ,寬 (橫斷面如圖 所示),暴雨后這艘船能從這座拱橋下通過嗎?

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,△ABC中,∠C90°,AC8BC6,E,F分別在邊AC,BC,若以EF為直徑作圓經(jīng)過AB上某點(diǎn)D,則EF長的取值范圍為_____

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4cm,以正方形的一邊BC為直徑在正方形ABCD內(nèi)作半圓,再過點(diǎn)A作半圓的切線,與半圓切于點(diǎn)F,與CD交于點(diǎn)E,則S梯形ABCE_____cm2

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知二次函數(shù)yax2+bx+c的圖象經(jīng)過點(diǎn)(0,3),(x1,0),其中,2x13,對稱軸為x1,則下列結(jié)論:2ab0 xax+b)≤a+b;方程ax2+bx+c30的兩根為x1'0x2'2;3a<﹣1.其中正確的是( 。

A. ②③④B. ①②③C. ②④D. ②③

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,ACBC,將△ACB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到△ACB′,則CB′的長為( 。

A. +B. 1+C. 3D. +

查看答案和解析>>

科目: 來源: 題型:

【題目】已知:如圖,在RtABC中,∠C90°,AC8cmBC6cm,點(diǎn)PB出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),速度為1cm/s;點(diǎn)QA出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),速度為2cm/s;連接PQ.若設(shè)運(yùn)動(dòng)的時(shí)間為ts)(0t4),解答下列問題:

1)當(dāng)t為何值時(shí),PQBC;

2)設(shè)△AQP的面積為ycm2),求yt之間的函數(shù)關(guān)系式;

3)是否存在某一時(shí)刻t,使線段PQ恰好把RtACB的周長和面積同時(shí)平分?若存在,求出此時(shí)t的值;若不存在,說明理由;

4)如圖,連接PC,并把△PQC沿QC翻折,得到四邊形PQPC,那么是否存在某一時(shí)刻t,使四邊形PQPC為菱形?若存在,求出此時(shí)菱形的邊長;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】問題提出:

n個(gè)環(huán)環(huán)相扣的圓環(huán)形成一串線型鏈條,當(dāng)只斷開其中的kkn)個(gè)環(huán),要求第一次取走一個(gè)環(huán),以后每次都只能比前一次多得一個(gè)環(huán),則最多能得到的環(huán)數(shù)n是多少呢?

問題探究:

為了找出nk之間的關(guān)系,我們運(yùn)用一般問題特殊化的方法,從特殊到一般,歸納出解決問題的方法.

探究一:k=1,即斷開鏈條其中的1個(gè)環(huán),最多能得到幾個(gè)環(huán)呢?

當(dāng)n=1,2,3時(shí),斷開任何一個(gè)環(huán),都能滿足要求,分次取走;

當(dāng)n=4時(shí),斷開第二個(gè)環(huán),如圖①,第一次取走1環(huán);第二次退回1環(huán)換取2環(huán),得2個(gè)環(huán);第三次再取回1環(huán),得3個(gè)環(huán);第四次再取另1環(huán),得4個(gè)環(huán),按要求分4次取走.

當(dāng)n=5,67時(shí),如圖②,圖③,圖④方式斷開,可以用類似上面的方法,按要求分5,6,7次取走.

當(dāng)n=8時(shí),如圖⑤,無論斷開哪個(gè)環(huán),都不可能按要求分次取走.

所以,當(dāng)斷開1個(gè)環(huán)時(shí),從得到更多環(huán)數(shù)的角度考慮,把鏈條分成3部分,分別是1環(huán)、2環(huán)和4環(huán),最多能得到7個(gè)環(huán).

即當(dāng)k=1時(shí),最多能得到的環(huán)數(shù)n=1+2+4=1+2×3=1+2×22-1=7.

探究二:k=2,即斷開鏈條其中的2個(gè)環(huán),最多能得到幾個(gè)環(huán)呢?

從得到更多環(huán)數(shù)的角度考慮,按圖⑥方式斷開,把鏈條分成5部分,按照類似探究一的方法,按要求分1,2,…23次取走.

所以,當(dāng)斷開2個(gè)環(huán)時(shí),把鏈條分成5部分,分別是1環(huán)、1環(huán)、3環(huán)、6環(huán)、12環(huán),最多能得到23個(gè)環(huán).

即當(dāng)k=2時(shí),最多能得到的環(huán)數(shù)n=1+1+3+6+12=2+3×7=2+3×23-1=23.

探究三:k=3,即斷開鏈條其中的3個(gè)環(huán),最多能得到幾個(gè)環(huán)呢?

從得到更多環(huán)數(shù)的角度考慮,按圖⑦方式斷開,把鏈條分成7部分,按照類似前面探究的方法,按要求分1,2,…63次取走.

所以,當(dāng)斷開3個(gè)環(huán)時(shí),從得到更多環(huán)數(shù)的角度考慮,把鏈條分成7部分,分別是1環(huán)、1環(huán)、1環(huán)、4環(huán)、8環(huán)、16環(huán)、32環(huán),最多能得到63個(gè)環(huán).

即當(dāng)k=3時(shí),最多能得到的環(huán)數(shù)n=1+1+1+4+8+16+32=3+4×15=3+4×24-1=63.

探究四:k=4,即斷開鏈條其中的4個(gè)環(huán),最多能得到幾個(gè)環(huán)呢?

按照類似前面探究的方法,當(dāng)斷開4個(gè)環(huán)時(shí),從得到更多環(huán)數(shù)的角度考慮,把鏈條分成 部分,分別為 ,最多能得到的環(huán)數(shù)n= .請畫出如圖⑥的示意圖.

模型建立:

n個(gè)環(huán)環(huán)相扣的圓環(huán)形成一串線型鏈條,斷開其中的kkn)個(gè)環(huán),從得到更多環(huán)數(shù)的角度考慮,把鏈條分成 部分,

分別是:11、1……1、k+1 、……、 ,最多能得到的環(huán)數(shù)n =

實(shí)際應(yīng)用:

一天一位財(cái)主對雇工說:你給我做兩年的工,我每天付給你一個(gè)銀環(huán).不過,我用一串環(huán)環(huán)相扣的線型銀鏈付你工錢,但你最多只能斷開銀鏈中的6個(gè)環(huán).如果你無法做到每天取走一個(gè)環(huán),那么你就得不到這兩年的工錢,如果銀鏈還有剩余,全部歸你!你愿意嗎?

聰明的你是否可以運(yùn)用本題的方法通過計(jì)算幫助雇工解決這個(gè)難題,雇工最多能得到總環(huán)數(shù)為多少環(huán)的銀鏈?

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,ABCD的對角線AC、BD相交于點(diǎn)O,OEOF

1)求證:△BOE≌△DOF

2)若BDEF,連接DE、BF,判斷四邊形EBFD的形狀,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案