科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OE∥AB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得與的長(zhǎng),然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,四邊形ABCD中,E是對(duì)角線AC上一點(diǎn),DE=EC,以AE為直徑的⊙O與邊CD相切于點(diǎn)D,點(diǎn)B在⊙O上,連接OB.
(1)求證:DE=OE;
(2)若CD∥AB,求證:BC是⊙O的切線;
(3)在(2)的條件下,求證:四邊形ABCD是菱形.
查看答案和解析>>
科目: 來源: 題型:
【題目】某電器超市銷售每臺(tái)進(jìn)價(jià)分別為2000元、1700元的A、B兩種型號(hào)的空調(diào),如表是近兩周的銷售情況:
銷售時(shí)段 | 銷售數(shù)量 | 銷售收入 | |
A種型號(hào) | B種型號(hào) | ||
第一周 | 3臺(tái) | 5臺(tái) | 18000元 |
第二周 | 4臺(tái) | 10臺(tái) | 31000元 |
(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷售總收入進(jìn)貨成本)
(1)求A、B兩種型號(hào)的空調(diào)的銷售單價(jià);
(2)若超市準(zhǔn)備用不多于54000元的金額再采購(gòu)這兩種型號(hào)的空調(diào)共30臺(tái),求A種型號(hào)的空調(diào)最多能采購(gòu)多少臺(tái)?
查看答案和解析>>
科目: 來源: 題型:
【題目】某縣教育局為了豐富初中學(xué)生的大課間活動(dòng),要求各學(xué)校開展形式多樣的陽(yáng)光體育活動(dòng).某中學(xué)就“學(xué)生體育活動(dòng)興趣愛好”的問題,隨機(jī)調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖:
(1)在這次調(diào)查中,喜歡籃球項(xiàng)目的同學(xué)有 人,在扇形統(tǒng)計(jì)圖中,“乒乓球”的百分比為 %,如果學(xué)校有800名學(xué)生,估計(jì)全校學(xué)生中有 人喜歡籃球項(xiàng)目.
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)在被調(diào)查的學(xué)生中,喜歡籃球的有2名女同學(xué),其余為男同學(xué).現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表班級(jí)參加;@球隊(duì),請(qǐng)直接寫出所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知平行四邊形ABCD中,如圖,對(duì)角線AC和BD相交于點(diǎn)O,AC=10,BD=8.
(1)若AC⊥BD,試求四邊形ABCD的面積;
(2)若AC與BD的夾角∠AOD=60°,求四邊形ABCD的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,反比例函數(shù)y=﹣在第二象限的圖象上有一點(diǎn)A,過點(diǎn)A作AB⊥x軸于點(diǎn)B,則S△AOB=_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖六個(gè)完全相同的小長(zhǎng)方形拼成了一個(gè)大長(zhǎng)方形,AB是其中一個(gè)小長(zhǎng)方形對(duì)角線,請(qǐng)?jiān)诖箝L(zhǎng)方形中完成下列畫圖,要求:僅用無刻度直尺;保留必要的畫圖痕跡.
在圖中畫一個(gè)角,使點(diǎn)A或點(diǎn)B是這個(gè)角的頂點(diǎn),且AB為這個(gè)角的一邊;
在圖中畫出線段AB的垂直平分線,并簡(jiǎn)要說明畫圖的方法不要求證明______.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,如圖在平面直角坐標(biāo)系中,過點(diǎn)A(0,2)的直線與⊙O相切于點(diǎn)C,與x軸交于點(diǎn)B且半徑為.
(1)求∠BAO的度數(shù).(2)求直線AB的解析式.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知關(guān)于x的一元二次方程ax2+x+2=0.
(1)求證:當(dāng)a<0時(shí),方程ax2+x+2=0一定有兩個(gè)不等的實(shí)數(shù)根;
(2)若代數(shù)式﹣x2+x+2的值為正整數(shù),且x為整數(shù)時(shí),求x的值;
(3)當(dāng)a=a1時(shí),拋物線y=ax2+x+2與x軸的正半軸相交于點(diǎn)M(m,0);當(dāng)a=a2時(shí),拋物線y=ax2+x+2與x軸的正半軸相交于點(diǎn)N(n,0);若點(diǎn)M在點(diǎn)N的左邊,試比較a1與a2的大小.
查看答案和解析>>
科目: 來源: 題型:
【題目】撫順某中學(xué)為了解八年級(jí)學(xué)生的體能狀況,從八年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行體能測(cè)試,測(cè)試結(jié)果分為A,B,C,D四個(gè)等級(jí).請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問題:
(1)本次抽樣調(diào)查共抽取了多少名學(xué)生?
(2)求測(cè)試結(jié)果為C等級(jí)的學(xué)生數(shù),并補(bǔ)全條形圖;
(3)若該中學(xué)八年級(jí)共有700名學(xué)生,請(qǐng)你估計(jì)該中學(xué)八年級(jí)學(xué)生中體能測(cè)試結(jié)果為D等級(jí)的學(xué)生有多少名?
(4)若從體能為A等級(jí)的2名男生2名女生中隨機(jī)的抽取2名學(xué)生,做為該校培養(yǎng)運(yùn)動(dòng)員的重點(diǎn)對(duì)象,請(qǐng)用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com