相關習題
 0  361219  361227  361233  361237  361243  361245  361249  361255  361257  361263  361269  361273  361275  361279  361285  361287  361293  361297  361299  361303  361305  361309  361311  361313  361314  361315  361317  361318  361319  361321  361323  361327  361329  361333  361335  361339  361345  361347  361353  361357  361359  361363  361369  361375  361377  361383  361387  361389  361395  361399  361405  361413  366461 

科目: 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線y=kx+b(k0)與軸交于點A(-2.0),與反比例函數y=(m0)的圖象交于點B(2,n),連接BO,若SAOB=4.

(1)求反比例函數和一次函數的表達式:

(2)若直線AB與y軸的交點為C.求△OCB的面積

(3)根據圖象,直接寫出當x>0時,不等式>kx+b的解集.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖1,2分別是某款籃球架的實物圖與示意圖,ABBC于點B,底座BC1.3米,底座BC與支架AC所成的角∠ACB60°,點H在支架AF上,籃板底部支架EHBCEFEH于點E,已知AH米,HF米,HE1米.

1)求籃板底部支架HE與支架AF所成的∠FHE的度數.

2)求籃板底部點E到地面的距離,(精確到0.01米)(參考數據:≈1.41,≈1.73

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在由邊長為1個單位長度的小正方形組成的網格圖中有格點△ABC(注:頂點在網格線交點處的三角形叫做格點三角形).只用沒有刻度的直尺,按如下要求畫圖,

(1)以點C為位似中心,在如圖中作△DECABC,且相似比為1:2;

(2)若點B為原點,點C(4,0),請在如圖中畫出平面直角坐標系,作出△ABC的外心,并直接寫出△ABC的外心的坐標

查看答案和解析>>

科目: 來源: 題型:

【題目】《孫子算經》是中國古代重要的數學著作,其中記載:“今有甲、乙二人,持錢各不知數.甲得乙中半,可滿四十八;乙得甲太半,亦滿四十八。問甲、乙二人原持錢各幾何?”譯文:“甲,乙兩人各有若干錢,如果甲得到乙所有錢的一半,那么甲共有錢48文,如果乙得到甲所有錢的,那么乙也共有錢48文,問甲、乙二人原來各有多少錢?”

查看答案和解析>>

科目: 來源: 題型:

【題目】RtABC中,∠ACB=90°.AC=8,BC=3,點DBC邊上動點,連接AD交以CD為直徑的圓于點E,則線段BE長度的最小值為( )

A.1B.C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖甲,在四邊形ABCD中,AD//BC,∠C=90°動點P從點C出發(fā)沿線段CD向點D運動.到達點D即停止,若E、F分別是APBP的中點,設CP=x,△PEF的面積為y,且yx之間的函數關系的圖象如圖乙所示,則線段AB長為( )

A.2B.2C.2D.2

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,平行四邊形ABCD中,∠BDC=30°,DC=4,AEBDE,CFBDF,且EF恰好是BD的三等分點,AE、CF的延長線分別交DC、ABNM點,那么四邊形MENF的面積是( )

A.B.C.2D.2

查看答案和解析>>

科目: 來源: 題型:

【題目】小明對九(1)、九(2)班(人數都為50人)參加“陽光體育”的情況進行了調查,統(tǒng)計結果如圖所示.下列說法中正確的是( )

A.喜歡乒乓球的人數(1)班比(2)班多B.喜歡足球的人數(1)班比(2)班多

C.喜歡羽毛球的人數(1)班比(2)班多D.喜歡籃球的人數(2)班比(1)班多

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,直線y=﹣x+3x軸交于點C,與y軸交于點B,拋物線y=ax2+x+c經過BC兩點.

1)求拋物線的解析式;

2)如圖,點E是直線BC上方拋物線上的一動點,當△BEC面積最大時,請求出點E的坐標和△BEC面積的最大值?

3)在(2)的結論下,過點Ey軸的平行線交直線BC于點M,連接AM,點Q是拋物線對稱軸上的動點,在拋物線上是否存在點P,使得以PQ、A、M為頂點的四邊形是平行四邊形?如果存在,請直接寫出點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】為了美化環(huán)境,建設宜居成都,我市準備在一個廣場上種植甲、乙兩種花卉.經市場調查,甲種花卉的種植費用(元)與種植面積之間的函數關系如圖所示,乙種花卉的種植費用為每平方米100.

(1)直接寫出當時,的函數關系式;

(2)廣場上甲、乙兩種花卉的種植面積共,若甲種花卉的種植面積不少于,且不超過乙種花卉種植面積的2倍,那么應該怎樣分配甲、乙兩種花卉的種植面積才能使種植費用最少?最少總費用為多少元?

查看答案和解析>>

同步練習冊答案