相關(guān)習(xí)題
 0  366283  366291  366297  366301  366307  366309  366313  366319  366321  366327  366333  366337  366339  366343  366349  366351  366357  366361  366363  366367  366369  366373  366375  366377  366378  366379  366381  366382  366383  366385  366387  366391  366393  366397  366399  366403  366409  366411  366417  366421  366423  366427  366433  366439  366441  366447  366451  366453  366459  366461 

科目: 來(lái)源: 題型:

【題目】閱讀材料:如圖,都是等腰直角三角形,且點(diǎn)邊上,,的中點(diǎn)均為,連接,,顯然,點(diǎn),,在同一條直線上,可以證明,所以

解決問(wèn)題:

1 將圖中的繞點(diǎn)旋轉(zhuǎn)到圖的位置, 猜想此時(shí)線段的數(shù)量關(guān)系,并證明你的結(jié)論.

2 如圖,若都是等邊三角形,,的中點(diǎn)均為,上述中結(jié)論仍然成立嗎?如果成立,請(qǐng)說(shuō)明理由;如果不成立,請(qǐng)求出之間的數(shù)量關(guān)系.

3 如圖 都是等腰三角形,,的中點(diǎn)均為,且頂角之間的數(shù)量關(guān)系如何(用含的式子表示出來(lái))?請(qǐng)直接寫(xiě)出結(jié)果.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】(問(wèn)題背景)在面積都相等的所有矩形中,當(dāng)其中一個(gè)矩形的一邊長(zhǎng)為時(shí),它的另一邊長(zhǎng)為.求周長(zhǎng)的取值范圍.

(建立模型)

1)設(shè)矩形相鄰兩邊的長(zhǎng)分別為,,由題意可得,則,由周長(zhǎng)為,得,即,滿(mǎn)足要求的的取值,從圖形角度考慮,應(yīng)是函數(shù) 的圖象在第一象限內(nèi)有公共點(diǎn)時(shí)的取值范圍;從“代數(shù)”角度考慮,應(yīng)看作方程 有正數(shù)解時(shí)的取值范圍.

(畫(huà)圖觀察)

2)函數(shù)的圖象如圖所示,而函數(shù)的圖象是一條與軸平行的直線.當(dāng)直線與函數(shù)的圖象有唯一公共點(diǎn)( )時(shí),周長(zhǎng)取得最小值為

(代數(shù)說(shuō)理)

3)圓圓說(shuō)矩形的周長(zhǎng)可以為,方方說(shuō)矩形的周長(zhǎng)可以為,你認(rèn)為圓圓和方方的說(shuō)法對(duì)嗎?為什么?

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】某商店計(jì)劃一次性購(gòu)進(jìn)甲、乙兩種商品共件,甲、乙兩種商品的進(jìn)價(jià)和售價(jià)如下表所示:

進(jìn)價(jià)(元/件)

100

80

售價(jià)(元/件)

150

120

設(shè)購(gòu)進(jìn)甲種商品的數(shù)量為件.

1)設(shè)進(jìn)貨成本為元,求之間的函數(shù)解析式;若購(gòu)進(jìn)甲種商品的數(shù)量不少于件,則最低進(jìn)貨成本是多少元?

2)若除了進(jìn)貨成本,還要支付運(yùn)費(fèi)和銷(xiāo)售員工工資共元,為盡快回籠資金,該商店決定對(duì)甲種商品進(jìn)行降價(jià)銷(xiāo)售,每件甲種商品降價(jià),乙種商品售價(jià)不變,設(shè)銷(xiāo)售完甲、乙兩種商品獲得的總利潤(rùn)為元.

①每件甲種商品的利潤(rùn)是 元(用含的代數(shù)式表示)

②求關(guān)于的函數(shù)解析式

③當(dāng)時(shí),請(qǐng)你根據(jù)的取值范圍,說(shuō)明該商店購(gòu)進(jìn)甲種商品多少件時(shí),獲得的總利潤(rùn)最大.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,的直徑,點(diǎn)右側(cè)半圓上的一個(gè)動(dòng)點(diǎn),點(diǎn)左側(cè)半圓的中點(diǎn),的切線,切點(diǎn)為,連接于點(diǎn).點(diǎn)為射線上一動(dòng)點(diǎn),連接,,

1)當(dāng)時(shí), 求證:

2)若的半徑為,請(qǐng)?zhí)羁眨?/span>

當(dāng)四邊形為正方形時(shí),

當(dāng) 時(shí), 四邊形為菱形.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】為了提高學(xué)生身體素質(zhì),某市中小學(xué)開(kāi)展陽(yáng)光健步走活動(dòng),某數(shù)學(xué)興趣小組收集了某校名學(xué)生一天行走的步數(shù)并記錄如下:

對(duì)這個(gè)數(shù)據(jù)按組距進(jìn)行分組,并統(tǒng)計(jì)整理,繪制了如下尚不完整的統(tǒng)計(jì)圖表.

調(diào)查結(jié)果統(tǒng)計(jì)表:

組別

步數(shù)分組

頻數(shù)

請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:

1)填空: ,

2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖.

3)這名學(xué)生一天行走步數(shù)的眾數(shù)落在 組.

4)根據(jù)科學(xué)研究,初中生一天的健步行走應(yīng)不少于步,若該校有名初中生,請(qǐng)你估計(jì)該校一天健步行走不少于步的學(xué)生人數(shù),并根據(jù)上述數(shù)據(jù),給校方提出合理化的建議(有利于健步行走的)

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖, 點(diǎn)為矩形的邊上一點(diǎn),連接,點(diǎn)從點(diǎn)沿折線運(yùn)動(dòng)到時(shí)停止, 點(diǎn)從點(diǎn)沿運(yùn)動(dòng)到點(diǎn)時(shí)停止,它們運(yùn)動(dòng)的速度都是,若點(diǎn),同時(shí)開(kāi)始運(yùn)動(dòng), 設(shè)運(yùn)動(dòng)時(shí)間為的面積為(當(dāng), 三點(diǎn)共線時(shí),不妨設(shè)).已知之間的函數(shù)關(guān)系的圖象如圖,則下列結(jié)論中錯(cuò)誤的是(

A.B.C.當(dāng)時(shí),D.當(dāng)時(shí),是等腰三角形

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖, 在平面直角坐標(biāo)系中, 的頂點(diǎn)與原點(diǎn)重合,點(diǎn)軸的正半軸上,按以下步驟作圖:①以點(diǎn)為圓心,適當(dāng)長(zhǎng)度為半徑作弧,分別交邊,于點(diǎn),;②分別以點(diǎn),為圓心,大于的長(zhǎng)為半徑作弧, 兩弧在內(nèi)交于點(diǎn);③作射線,交邊于點(diǎn).若,,則點(diǎn)的坐標(biāo)為(

A.B.C.D.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,拋物線頂點(diǎn)A的坐標(biāo)為(1,4),拋物線與x軸相交于B、C兩點(diǎn),與y軸交于點(diǎn)E0,3).

1)求拋物線的表達(dá)式;

2)已知點(diǎn)F0-3),在拋物線的對(duì)稱(chēng)軸上是否存在一點(diǎn)P,使得EP+FP最小,如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】某公司招聘人才,對(duì)應(yīng)聘者分別進(jìn)行閱讀能力、思維能力和表達(dá)能力三項(xiàng)測(cè)試,其中甲、乙兩人的成績(jī)?nèi)缦卤恚▎挝唬悍郑?/span>

項(xiàng)目人員

閱讀能力

思維能力

表達(dá)能力

93

86

73

95

81

79

1)根據(jù)實(shí)際需要,公司將閱讀、思維和表達(dá)能力三項(xiàng)測(cè)試得分按352的比確定每人的最后成績(jī),若按此成績(jī)?cè)诩、乙兩人中錄用一人,誰(shuí)將被錄用?

2)公司按照(1)中的成績(jī)計(jì)算方法,將每位應(yīng)聘者的最后成績(jī)繪制成如圖所示的頻數(shù)分布直方圖(每組分?jǐn)?shù)段均包含左端數(shù)值,不包含右端數(shù)值,如最右邊一組分?jǐn)?shù)x為:85≤x90),并決定由高分到低分錄用8名員工,甲、乙兩人能否被錄用?請(qǐng)說(shuō)明理由,并求出本次招聘人才的錄用率.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,AB⊙O的直徑,點(diǎn)E上的一點(diǎn),∠DBC=∠BED

1)求證:BC⊙O的切線;

2)已知AD=3CD=2,求BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案