【題目】已知橢圓的離心率,且圓過橢圓的上,下頂點(diǎn).

1)求橢圓的方程.

2)若直線的斜率為,且直線交橢圓兩點(diǎn),點(diǎn)關(guān)于點(diǎn)的對(duì)稱點(diǎn)為,點(diǎn)是橢圓上一點(diǎn),判斷直線的斜率之和是否為定值,如果是,請(qǐng)求出此定值:如果不是,請(qǐng)說明理.

【答案】1;(2)是,0.

【解析】

(1)根據(jù)已知條件,求出,即可得到橢圓方程;

(2)設(shè)直線的方程為,將其代入橢圓方程后,根據(jù)韋達(dá)定理以及斜率公式變形,可得答案.

1)因?yàn)閳A過橢圓的上,下頂點(diǎn),所以,

又離心率,所以,

于是有,解得,.所以橢圓的方程為;

2)由于直線的斜率為,可設(shè)直線的方程為,代入橢圓,

可得.

由于直線交橢圓、兩點(diǎn),所以,

整理解得

設(shè)點(diǎn)、,由于點(diǎn)與點(diǎn)關(guān)于原點(diǎn)的對(duì)稱,故點(diǎn),

于是有,.

若直線的斜率分別為,,由于點(diǎn),

,

又∵,.

于是有

,

故直線的斜率之和為0,即.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,平分...

1)設(shè)E的中點(diǎn),求證:平面

2)設(shè)平面,若與平面所成的角為45°,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,則當(dāng)時(shí),討論的單調(diào)性;

(2)若,且當(dāng)時(shí),不等式在區(qū)間上有解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度,再把所得的函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變)得到函數(shù)的圖象,關(guān)于的說法有:①函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱;②函數(shù)的圖象的一條對(duì)稱軸是;③函數(shù)上的最上的最小值為;④函數(shù)上單調(diào)遞增,則以上說法正確的個(gè)數(shù)是(

A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是自然對(duì)數(shù)的底數(shù),,已知函數(shù).

1)若函數(shù)有零點(diǎn),求實(shí)數(shù)的取值范圍;

2)對(duì)于,證明:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列有關(guān)線性回歸分析的四個(gè)命題:

①線性回歸直線必過樣本數(shù)據(jù)的中心點(diǎn)();

②回歸直線就是散點(diǎn)圖中經(jīng)過樣本數(shù)據(jù)點(diǎn)最多的那條直線;

③當(dāng)相關(guān)性系數(shù)時(shí),兩個(gè)變量正相關(guān);

④如果兩個(gè)變量的相關(guān)性越強(qiáng),則相關(guān)性系數(shù)就越接近于

其中真命題的個(gè)數(shù)為( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線與坐標(biāo)軸的交點(diǎn)都在圓C.

1)求圓C的方程;

2)若圓C與直線交于A,B兩點(diǎn),且,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三位同學(xué)進(jìn)行羽毛球比賽,約定賽制如下:累計(jì)負(fù)兩場(chǎng)者被淘汰;比賽前抽簽決定首先比賽的兩人,另一人輪空;每場(chǎng)比賽的勝者與輪空者進(jìn)行下一場(chǎng)比賽,負(fù)者下一場(chǎng)輪空,直至有一人被淘汰;當(dāng)一人被淘汰后,剩余的兩人繼續(xù)比賽,直至其中一人被淘汰,另一人最終獲勝,比賽結(jié)束.經(jīng)抽簽,甲、乙首先比賽,丙輪空.設(shè)每場(chǎng)比賽雙方獲勝的概率都為

1)求甲連勝四場(chǎng)的概率;

2)求需要進(jìn)行第五場(chǎng)比賽的概率;

3)求丙最終獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019625日,《固體廢物污染環(huán)境防治法(修訂草案)》初次提請(qǐng)全國(guó)人大常委會(huì)審議,草案對(duì)“生活垃圾污染環(huán)境的防治”進(jìn)行了專項(xiàng)規(guī)定.某小區(qū)采取一系列措施,宣傳垃圾分類的知識(shí)與意義,并采購(gòu)分類垃圾箱.為了了解垃圾分類的效果,該小區(qū)物業(yè)隨機(jī)抽取了200位居民進(jìn)行問卷調(diào)查,每位居民對(duì)小區(qū)采取的措施給出“滿意”或“不滿意”的評(píng)價(jià).根據(jù)調(diào)查結(jié)果統(tǒng)計(jì)并做出年齡分布條形圖和持不滿意態(tài)度的居民的結(jié)構(gòu)比例圖,如圖,在這200份問卷中,持滿意態(tài)度的頻率是0.65.

1)完成下面的列聯(lián)表,并判斷能否有的把握認(rèn)為“51歲及以上”和“50歲及以下”的居民對(duì)該小區(qū)采取的措施的評(píng)價(jià)有差異

滿意

不滿意

總計(jì)

51歲及以上的居民

50歲及以下的居民

總計(jì)

200

2)按“51歲及以上”和“50歲及以下”的年齡段采取分層抽樣的方法從中隨機(jī)抽取5份,再?gòu)倪@5份調(diào)查問卷中隨機(jī)抽取2份進(jìn)行電話家訪,求電話家訪的兩位居民恰好一位年齡在51歲及以上,另一位年齡在50歲及以下的概率.

0.050

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

附表及參考公式:,其中.

查看答案和解析>>

同步練習(xí)冊(cè)答案