14.在Rt△ABC中,∠C=90°,$\overrightarrow{AB}$•$\overrightarrow{AC}$=25,則AC等于( 。
A.2B.3C.4D.5

分析 由題意畫出圖形,展開(kāi)數(shù)量積,結(jié)合投影概念得答案.

解答 解:如圖,

由$\overrightarrow{AB}$•$\overrightarrow{AC}$=$|\overrightarrow{AB}|•|\overrightarrow{AC}|cosA=|\overrightarrow{AC}{|}^{2}=25$,
得$|\overrightarrow{AC}|=5$,
即AC=5.
故選:D.

點(diǎn)評(píng) 本題考查平面向量的數(shù)量積運(yùn)算,考查了向量在向量方向上的投影,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知數(shù)列{an}是公差不為0的等差數(shù)列,其前n項(xiàng)的和為Sn,若a${\;}_{2}^{2}$+a${\;}_{3}^{2}$=a${\;}_{4}^{2}$+a${\;}_{5}^{2}$,S7=7,求等差數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知α、β∈(0,π),tanα=$\frac{4}{3}$.
(1)求$\frac{sin2α-co{s}^{2}α}{1+cos2α}$的值;
(2)若sin(α+β)=$\frac{5}{13}$,求cosβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.實(shí)軸長(zhǎng)是10,焦點(diǎn)坐標(biāo)分別為(0,-$\sqrt{29}$),(0,$\sqrt{29}$)的雙曲線方程為( 。
A.$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{25}$=1C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{25}$=1D.$\frac{{y}^{2}}{25}$-$\frac{{x}^{2}}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,$\overrightarrow{a}$與$\overrightarrow$的夾角為120°,求使$\overrightarrow{a}$+k$\overrightarrow$與k$\overrightarrow{a}$+$\overrightarrow$的夾角為銳角的實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知向量$\overrightarrow$為單位向量,向量$\overrightarrow{{a}_{n}}$=(cos$\frac{nπ}{7}$,sin$\frac{nπ}{7}$)(n∈N*),則下列判斷一定正確的是( 。
A.$\overrightarrow{{a}_{n}}$∥$\overrightarrow$B.$\overrightarrow{{a}_{n}}$⊥$\overrightarrow$C.$\overrightarrow{{a}_{n}}$•$\overrightarrow$=1D.($\overrightarrow{{a}_{n}}$+$\overrightarrow$)⊥($\overrightarrow{{a}_{n}}$-$\overrightarrow$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知圓C:(x+c)2+y2=4a2,點(diǎn)A(c,0),其中c>a>0,M是圓C上的動(dòng)點(diǎn),MA的中垂線交MC所在直線于P,則點(diǎn)P的軌跡是( 。
A.橢圓B.雙曲線C.拋物線D.直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知雙曲線中心在原點(diǎn),頂點(diǎn)在y軸上,兩頂點(diǎn)間的距離是16,且離心率為$\frac{5}{4}$,試求雙曲線方程及焦點(diǎn)到漸近線的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知a,b是實(shí)數(shù),函數(shù)f(x)=x|x-a|+b.
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a>0時(shí),求函數(shù)f(x)在區(qū)間[1,2]上的最大值;
(3)若存在a∈[-3,0],使得函數(shù)f(x)在[-4,5]上恒有三個(gè)零點(diǎn),求b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案