精英家教網 > 高中數學 > 題目詳情

【題目】公元263年左右,我國數學家劉徽發(fā)現當圓內接正多邊形的邊數無限增加時,多邊形面積可無限逼近于圓的面積,并創(chuàng)立了“割圓術”,利用“割圓術”劉徽得到了圓周率精確到小數點后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術”思想設計的一個程序框圖,則輸出的(四舍五入精確到小數點后兩位)的值為( )(參考數據:sin15°=0.2588,sin75°=0.1305)
A.3.10
B.3.11
C.3.12
D.3.13

【答案】B
【解析】解:模擬執(zhí)行程序,可得: k=0,S=3sin60°=
k=1,S=6×sin30°=3,
k=2,S=12×sin15°=12×0.2588=3.1056≈3.11,
退出循環(huán),輸出的值為3.11.
故選:B.
列出循環(huán)過程中S與k的數值,滿足判斷框的條件即可結束循環(huán).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知冪函數為偶函數.

1)求的解析式;

2)若函數在區(qū)間(2,3)上為單調函數,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某快遞公司在某市的貨物轉運中心,擬引進智能機器人分揀系統(tǒng),以提高分揀效率和降低物流成本,已知購買x臺機器人的總成本p(x)萬元.

(1)若使每臺機器人的平均成本最低,問應買多少臺?

(2)現按(1)中的數量購買機器人,需要安排m人將郵件放在機器人上,機器人將郵件送達指定落袋格口完成分揀,經實驗知,每臺機器人的日平均分揀量q(m) (單位:件),已知傳統(tǒng)人工分揀每人每日的平均分揀量為1200件,問引進機器人后,日平均分揀量達最大值時,用人數量比引進機器人前的用人數量最多可減少百分之幾?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖半圓柱OO1的底面半徑和高都是1,面ABB1A1是它的軸截面(過上下底面圓心連線OO1的平面),Q,P分別是上下底面半圓周上一點.
(1)證明:三棱錐Q﹣ABP體積VQ﹣ABP ,并指出P和Q滿足什么條件時有AP⊥BQ
(2)求二面角P﹣AB﹣Q平面角的取值范圍,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中為實數.

(1)若曲線在點處的切線方程為,試求函數的單調區(qū)間;

(2)當,,且時,若恒有,試求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在多面體ABCDEF中,底面ABCD為正方形,平面AED⊥平面ABCD,AB= EA= ED,EF∥BD
(I)證明:AE⊥CD
(II)在棱ED上是否存在點M,使得直線AM與平面EFBD所成角的正弦值為 ?若存在,確定點M的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)=(m2m-1)·是冪函數,對任意x1,x2∈(0,+∞)且x1x2,滿足,若a,b∈R且ab>0,ab<0,則f(a)+f(b)的值(  )

A. 恒大于0 B. 恒小于0

C. 等于0 D. 無法判斷

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0)上的點M(x0 , y0)到點N(2,0)距離的最小值為
(1)求拋物線C的方程;
(2)若x0>2,圓E(x﹣1)2+y2=1,過M作圓E的兩條切線分別交y軸A(0,a),B(0,b)兩點,求△MAB面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中xOy,直線C1的參數方程為 (t是參數).在以坐標原點為極點,x軸非負半軸為極軸的極坐標系中,曲線C2的極坐標方程為ρ=sinθ﹣cosθ(θ是參數).
(Ⅰ)將曲線C2的極坐標方程化為直角坐標方程,并判斷曲線C2所表示的曲線;
(Ⅱ)若M為曲線C2上的一個動點,求點M到直線C1的距離的最大值和最小值.

查看答案和解析>>

同步練習冊答案