9.下列結(jié)論正確的是( 。
A.當(dāng)x>0且x≠1時(shí),lgx+$\frac{1}{lgx}$≥2B.x>0時(shí),6-x-$\frac{4}{x}$的最大值是2
C.$\frac{{x}^{2}+5}{\sqrt{{x}^{2}+4}}$的最小值是2D.當(dāng)x∈(0,π)時(shí),sinx+$\frac{4}{sinx}$≥4

分析 由基本不等式的規(guī)律,逐個(gè)選項(xiàng)驗(yàn)證可得.

解答 解:選項(xiàng)A,lgx可能為負(fù)值,故lgx+$\frac{1}{lgx}$≥2錯(cuò)誤;
選項(xiàng)B,6-x-$\frac{4}{x}$=6-(x+$\frac{4}{x}$),而x+$\frac{4}{x}$$≥2\sqrt{x•\frac{4}{x}}$=4,或x+$\frac{4}{x}$≤-2$\sqrt{x•\frac{4}{x}}$=-4,
故6-(x+$\frac{4}{x}$)≤2,故B正確;
選項(xiàng)C,$\frac{{x}^{2}+5}{\sqrt{{x}^{2}+4}}$=$\frac{{x}^{2}+4+1}{\sqrt{{x}^{2}+4}}$=$\sqrt{{x}^{2}+4}$+$\frac{1}{\sqrt{{x}^{2}+4}}$≥2,
當(dāng)且僅當(dāng)$\sqrt{{x}^{2}+4}$=$\frac{1}{\sqrt{{x}^{2}+4}}$即$\sqrt{{x}^{2}+4}$=1時(shí)取等號(hào),
此時(shí)x2=-3,故等號(hào)取不到,故$\frac{{x}^{2}+5}{\sqrt{{x}^{2}+4}}$>2,取不到2,故錯(cuò)誤;
選項(xiàng)D,當(dāng)x∈(0,π)時(shí),sinx>0,由基本不等式可得
sinx+$\frac{4}{sinx}$≥2$\sqrt{sinx•\frac{4}{sinx}}$=4,sinx取不到2 故不正確.
故選:D

點(diǎn)評(píng) 本題考查基本不等式,逐個(gè)驗(yàn)證是解決問題的關(guān)鍵,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.拋物線y=-$\frac{1}{2}$x2的焦點(diǎn)坐標(biāo)為(  )
A.(-$\frac{1}{2}$,0)B.(0,-$\frac{1}{4}$)C.(0,-$\frac{1}{2}$)D.(0,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知sin2θ=$\frac{3}{7}$,則cos2(θ-$\frac{π}{4}$)的值是( 。
A.$\frac{2}{7}$B.$\frac{3}{7}$C.$\frac{4}{7}$D.$\frac{5}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.冪函數(shù)y=xa,當(dāng)a取不同的正數(shù)時(shí),在區(qū)間[0,1]上它們的圖象是一組美麗的曲線(如圖),設(shè)點(diǎn)A(1,0),B(0,1),連結(jié)AB,線段AB恰好被其中的兩個(gè)冪函數(shù)y=xa,y=xb的圖象三等分,即有BM=MN=NA,那么a-$\frac{1}$=( 。
A.0B.1C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.在平面直角坐標(biāo)系中,橫、縱坐標(biāo)均為整數(shù)的點(diǎn)叫做格點(diǎn),若函數(shù)圖象恰好經(jīng)過(guò)k個(gè)格點(diǎn),則稱函數(shù)為k階格點(diǎn)函數(shù),給出下列四個(gè)函數(shù):
①y=sinx+1;
②y=cos(x+$\frac{π}{3}$);
③y=ex-1;
④y=(x+1)2
其中為一階格點(diǎn)函數(shù)的序號(hào)為①③(把你認(rèn)為正確的命題序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.拋物線x2=ay(a∈R)的焦點(diǎn)坐標(biāo)為( 。
A.($\frac{a}{2}$,0)B.($\frac{a}{4}$,0)C.(0,$\frac{a}{2}$)D.(0,$\frac{a}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若命題“?x∈(1,+∞),x2-(2+a)x+2+a≥0”為真命題,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-2]B.(-∞,2]C.[-2,2]D.(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.將5名志愿者分配到3個(gè)不同的奧運(yùn)場(chǎng)館參加接等工作,每個(gè)場(chǎng)館至少分配一名志愿者的方案種數(shù)為( 。
A.240B.300C.150D.180

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在△ABC中,AB=4,AC=6,cosB=$\frac{1}{8}$.
(Ⅰ)求△ABC面積;
(Ⅱ)求AC邊上的中線BD的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案