定義在[-3,3]上的偶函數(shù)f(x)在區(qū)間[0,3]上的圖象是如圖的曲線OAB,其中點(diǎn)O,A,B的坐標(biāo)分別為(0,0),(1,2),(3,1),則函數(shù)f(x)的單調(diào)遞減區(qū)間有
 
考點(diǎn):函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:通過f(x)是定義在[-3,3]上的偶函數(shù),得到函數(shù)的圖象關(guān)于y軸對稱,結(jié)合函數(shù)的圖象,從而得出函數(shù)的單調(diào)遞減區(qū)間.
解答: 解:∵f(x)是定義在[-3,3]上的偶函數(shù),
∴函數(shù)的圖象關(guān)于y軸對稱,
∴在區(qū)間[-1,0]上,函數(shù)f(x)是減函數(shù),
∴f(x)的遞減區(qū)間是:[-1,0]和[1,3],
故答案為:[-1,0]和[1,3].
點(diǎn)評:本題考查了函數(shù)的單調(diào)性問題,考查了函數(shù)的奇偶性,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①已知集合M滿足∅?M⊆{1,2,3,4,},且M中至多有一個偶數(shù),這樣的集合M有6個;
②函數(shù)f(x)=ax2+2(a-1)x+2,在區(qū)間(-∞,4)上為減函數(shù),則a的取值范圍為0≤a≤
1
5
;
③已知函數(shù)f(x)=
x
x+1
,則f(2)+f(3)+…+f(61)+f(
1
2
)+f(
1
3
)+…+f(
1
61
)=60
;
④如果函數(shù)y=f(x)的圖象關(guān)于y軸對稱,且f(x)=(x-2014)2+1(x≥0),
則當(dāng)x<0時,f(x)=(x+2014)2-1;
其中正確的命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)滿足:f(x+1)=x2+x+1.
(1)求f(x)的解析式;
(2)求f(x)在區(qū)間[0,2]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A=B=R,x∈A,y∈B,f:x→y=ax+b,若4和10的原象分別是6和9,則19在f作用下的象為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

F1、F2分別是橢圓
x2
49
+
y2
24
=1的左、右焦點(diǎn),點(diǎn)P在橢圓上,且|PF1|-|PF2|=2,則△PF1F2的面積為( 。
A、24
3
B、24
C、48
3
D、48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x2+2的導(dǎo)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+lnx(a∈R).
(Ⅰ)若a=2,求曲線y=f(x)在x=1處切線的斜率;
(Ⅱ)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
2sinθ+cosθ
sinθ-3cosθ
=-5,則3cos2θ+4sin2θ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知冪函數(shù)y=f(x)的圖象過點(diǎn)(2,8),則f(5)的值為( 。
A、243B、125
C、40D、25

查看答案和解析>>

同步練習(xí)冊答案