分析 在所給的等式中,分別令x=1和x=-1,相減可得a1+a3 的值;再求出常數(shù)項a0的值,即可得到a0+a1+a3的值.
解答 解:(1-2x)4=a0+a1x+a2x2+a3x3+a4x4中,
令x=1得,a0+a1+a2+a3+a4=1 ①,
令x=-1 得,a0-a1+a2-a3+a4=81 ②,
用①-②得,2(a1+a3 )=-80,
∴a1+a3=-40;
令x=0,得 a0=1,
∴a0+a1+a3=1-40=-39.
故答案為:-39.
點評 本題主要考查了二項式定理的應(yīng)用問題,關(guān)鍵是根據(jù)要求的結(jié)果,選擇合適的數(shù)值代入,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,+∞) | B. | [0,+∞) | C. | (1,+∞) | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 6+4$\sqrt{2}$ | C. | 4+4$\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2,5 | B. | 2+a,5 | C. | 2+a,5+a | D. | 2,5+a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若 x>y>0,則 ln x+ln y>0 | |
B. | “φ=$\frac{π}{2}$”是“函數(shù) y=sin(2x+φ) 為偶函數(shù)”的充要條件 | |
C. | ?x0∈(-∞,0),使 3x0<4x0成立 | |
D. | 已知兩個平面α,β,若兩條異面直線m,n滿足m?α,n?β且 m∥β,n∥α,則α∥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com