5.若集合A={y|y=lgx},B={x|y=$\sqrt{x}$},則集合A∩B=(  )
A.(0,+∞)B.[0,+∞)C.(1,+∞)D.

分析 根據(jù)函數(shù)的定義域和值域求出集合A、B,利用定義寫出A∩B.

解答 解:集合A={y|y=lgx}={y|y∈R}=R,
B={x|y=$\sqrt{x}$}={x|x≥0},
則集合A∩B={x|x≥0}=[0,+∞).
故選:B.

點評 本題考查了集合的定義與函數(shù)的定義域和值域的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.以下是新兵訓(xùn)練時,某炮兵連8周中炮彈對同一目標(biāo)的命中情況的柱狀圖:
 
(1)計算該炮兵連這8周中總的命中頻率p0,并確定第幾周的命中頻率最高;
(2)以(1)中的p0作為該炮兵連炮兵甲對同一目標(biāo)的命中率,若每次發(fā)射相互獨立,且炮兵甲發(fā)射3次,記命中的次數(shù)為X,求X的數(shù)學(xué)期望;
(3)以(1)中的p0作為該炮兵連炮兵對同一目標(biāo)的命中率,試問至少要用多少枚這樣的炮彈同時對該目標(biāo)發(fā)射一次,才能使目標(biāo)被擊中的概率超過0.99?(取lg0.4=-0.398)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.“cos2α=0”是“sinα=cosα”的( 。
A.充要條件B.充分非必要條件
C.必要非充分條件D.非充分非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知一組數(shù)據(jù)a、b、9、10、11的平均數(shù)為10,方差為2,則|a-b|=( 。
A.2B.4C.8D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.為了摸清整個江門大道的交通狀況,工作人員隨機(jī)選取20處路段,在給定的測試時間內(nèi)記錄到機(jī)動車的通行數(shù)量情況如下(單位:輛):
147  161  170  180  163  172  178  167  191  182
181  173  174  165  158  154  159  189  168  169
(Ⅰ)完成如下頻數(shù)分布表,并作頻率分布直方圖;
通行數(shù)量區(qū)間[145,155)[155,165)[165,175)[175,185)[185,195)
頻數(shù)
(Ⅱ)現(xiàn)用分層抽樣的方法從通行數(shù)量區(qū)間為[165,175)、[175,185)及[185,195)的路段中取出7處加以優(yōu)化,再從這7處中隨機(jī)選2處安裝智能交通信號燈,設(shè)所取出的7處中,通行數(shù)量區(qū)間為[165,175)路段安裝智能交通信號燈的數(shù)量為隨機(jī)變量X(單位:盞),試求隨機(jī)變量X的分布列與數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,在各小正方形邊長為1的網(wǎng)格上依次為某幾何體的正視圖.側(cè)視圖與俯視圖,其中正視圖為等邊三角形,則此幾何體的體積為( 。
A.1+$\frac{2π}{3}$B.$\frac{4}{3}$+$\frac{2π}{3}$C.$\frac{2\sqrt{3}}{3}$+$\frac{\sqrt{3}π}{6}$D.$\frac{2\sqrt{3}}{3}$+$\frac{\sqrt{3}π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={x|-1<x<3},B={x|x<a},若A∩B=A,則實數(shù)a的取值范圍是( 。
A.a>3B.a≥3C.a≥-1D.a>-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{2x+y≤4}\\{x-y≥1}\\{x-2y≤2}\end{array}\right.$,則目標(biāo)函數(shù)z=3x+y的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若(1-2x)4=a0+a1x+a2x2+a3x3+a4x4,則a0+a1+a3=-39.

查看答案和解析>>

同步練習(xí)冊答案