16.橢圓$\frac{{x}^{2}}{49}$+$\frac{{y}^{2}}{24}$=1的焦點(diǎn)為F1、F2,點(diǎn)P在橢圓上,若|PF1|=6,則∠F1PF2的大小為( 。
A.150°B.135°C.120°D.90°

分析 利用橢圓的簡(jiǎn)單性質(zhì)求出焦距,利用定義求出三角形的邊長(zhǎng),即可求解角的大小.

解答 解:橢圓$\frac{{x}^{2}}{49}$+$\frac{{y}^{2}}{24}$=1的焦距為F1F2=10,a=7,點(diǎn)P在橢圓上,若|PF1|=6,由橢圓的定義可知|PF2|=8,
△F1PF2是直角三角形,∠F1PF2的大小為90°.
故選:D.

點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì)以及定義的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)集合A={x|0<x<4},B={x|x<a}若A⊆B,則實(shí)數(shù)a的取值范圍是( 。
A.{a|a≤0}B.{a|0<a≤4}C.{a|a≥4}D.{a|0<a<4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知橢圓C的方程為x2+$\frac{{y}^{2}}{4}$=1,定點(diǎn)N(0,1),過(guò)圓M:x2+y2=$\frac{4}{5}$上任意一點(diǎn)作圓M的一條切線交橢圓C于A,B兩點(diǎn).
(1)求證:$\overrightarrow{OA}•\overrightarrow{OB}=0$;
(2)若點(diǎn)P,Q在橢圓C上,直線PQ與x軸平行,直線PN交橢圓于另一個(gè)不同的點(diǎn)S,問(wèn):直線QS是否經(jīng)過(guò)一個(gè)定點(diǎn)?若是,求出這個(gè)定點(diǎn)的坐標(biāo);若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知數(shù)列{an}前n項(xiàng)和為Sn,a1=1,滿足Sn=2an+1+n,n∈N*,則求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)α、β、γ為彼此不重合的三個(gè)平面,l為直線,給出下列命題:
①若α∥β,α⊥γ,則β⊥γ;
②若α⊥γ,β⊥γ,且α∩β=l,則l⊥γ;
③若直線l與平面α內(nèi)的無(wú)數(shù)條直線垂直,則直線l與平面α垂直;
④若α內(nèi)存在不共線的三點(diǎn)到β的距離相等,則平面α平行于平面β.
上述命題中,正確命題的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.正四棱柱ABCD-A1B1C1D1中,AB=2,AA1=1,點(diǎn)E是B1C1的中點(diǎn),則異面直線AC1與BE所成角的大小為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知拋物線y2=2px的焦點(diǎn)與橢圓$\frac{x^2}{5}+{y^2}$=1的右焦點(diǎn)重合,則p的值為( 。
A.2B.-2C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)y=x+$\frac{a}{x}$(a>0)在區(qū)間$(0,\sqrt{a}]$上單調(diào)遞減,在區(qū)間$[\sqrt{a},+∞)$上單調(diào)遞增;函數(shù)$h(x)={({x^2}+\frac{1}{x})^3}+{(x+\frac{1}{x^2})^3}(x∈[\frac{1}{2},2])$
(1)請(qǐng)寫(xiě)出函數(shù)f(x)=x2+$\frac{a}{x^2}$(a>0)與函數(shù)g(x)=xn+$\frac{a}{x^n}$(a>0,n∈N,n≥3)在(0,+∞)的單調(diào)區(qū)間(只寫(xiě)結(jié)論,不證明);
(2)求函數(shù)h(x)的最值;
(3)討論方程h2(x)-3mh(x)+2m2=0(0<m≤30)實(shí)根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知sinα-sinβ=$\frac{{\sqrt{6}}}{3},cosα-cosβ=\frac{{\sqrt{3}}}{3}$,則$|{cos\frac{α-β}{2}}$|=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案