已知f(3x)=4xlog23,則f(4)的值等于(  )
A、4B、8C、16D、9
考點:對數(shù)的運(yùn)算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:令3x=t>0,則x=log3t.f(t)=4log3t•log23.把t=4代入再利用對數(shù)的換底公式即可得出.
解答: 解:令3x=t>0,則x=log3t.
∴f(t)=4log3t•log23.
∴f(4)=4log34•log23
=
8lg2
lg3
lg3
lg2

=8.
故選:B.
點評:本題考查了指數(shù)式與對數(shù)式的互化、對數(shù)的換底公式、換元法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

北京、張家港2022年冬奧會申辦委員會在俄羅斯索契舉辦了發(fā)布會,某公司為了競標(biāo)配套活動的相關(guān)代言,決定對旗下的某商品進(jìn)行一次評估.該商品原來每件售價為25元,年銷售8萬件.
(1)據(jù)市場調(diào)查,若價格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收入不低于原收入,該商品每件定價最多為多少元?
(2)為了抓住申奧契機(jī),擴(kuò)大該商品的影響力,提高年銷售量.公司決定立即對該商品進(jìn)行全面技術(shù)革新和營銷策略改革,并提高定價到x元.公司擬投入
1
6
(x2-600)
萬作為技改費(fèi)用,投入50萬元作為固定宣傳費(fèi)用,投入
x
5
萬元作為浮動宣傳費(fèi)用.試問:當(dāng)該商品改革后的銷售量a至少應(yīng)達(dá)到多少萬件時,才可能使改革后的銷售收入不低于原收入與總投入之和?并求出此時商品的每件定價.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

寫出函數(shù)f(x)=-x2+2x-3的單調(diào)遞增區(qū)間,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式x2-kx+2>0恒成立,則實數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某住宅小區(qū)計劃植樹不少于100棵,若第一天植2棵,以后每天植樹的棵樹是前一天的2倍,則需要的最少天數(shù)n(n∈N*)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

角α,β的終邊關(guān)于直線y=x對稱,且α=
π
6
,則在[0,4π)內(nèi),滿足要求的角β等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是冪函數(shù)y=xn在第一象限內(nèi)的圖象,已知n取
1
2
,2,-2,-
1
2
四值,則相應(yīng)于曲線C1,C2,C3,C4的n依次為( 。
A、2,
1
2
,-
1
2
,-2
B、-2,-
1
2
,
1
2
,2
C、-
1
2
,-2,2,
1
2
D、2,
1
2
,-2,-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x<2
3
}
,a=2,則下列關(guān)系正確的是( 。
A、a?AB、{a}∈A
C、a∈AD、a∉A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各圖中,表示以x為自變量的函數(shù)的圖象是(  )
A、
B、
C、
D、

查看答案和解析>>

同步練習(xí)冊答案