下圖是幾何體ABC-A1B1C1的三視圖和直觀圖.M是CC1上的動點,N,E分別是AM,A1B1的中點.
(1)求證:NE平面BB1C1C;
(2)當M在CC1的什么位置時,B1M與平面AA1C1C所成的角是30°.
(1)證明:連接AE并延長交BB1于點D,連接DM,則NE為三角形ADM的中位線
∴NEDM
∵NE?平面BB1C1C,DM?平面BB1C1C
∴NE平面BB1C1C;
(2)過B1作B1F⊥A1C1,連接FM,則
∵AA1⊥平面A1B1C1,B1F?平面A1B1C1,
∴AA1⊥B1F
∵A1C1∩AA1=A1,∴B1F⊥平面AA1C1C
∴∠B1MF為B1M與平面AA1C1C所成的角,即∠B1MF=30°
∵A1B1=B1C1=2,A1B1⊥B1C1,∴B1F=
2

∴B1M=2
2

∴C1M=2
∵CC1=4,
∴M是CC1的中點時,B1M與平面AA1C1C所成的角是30°.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在空間四邊形ABCD中,E,F(xiàn)分別是AB,CD的中點.
(1)若AB=BC=CD=AD=AC=BD=2a,求EF的長;
(2)若AD=BC=2a,EF=
3
a
,求異面直線AD與BC所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在正方體ABCD-A1B1C1D1中,M、N分別為棱A1B1和BB1的中點,那么異面直線AM和CN所成角的余弦值是( 。
A.
3
2
B.
10
2
C.
2
5
D.-
2
5

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

四棱錐P-ABCD的底面是正方形,PD⊥底面ABCD,且PD=
2
AB
,點E為PB的中點,則AE與平面PDB所成的角的大小為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設OA是球O的半徑,M是OA的中點,過M且與OA成450角的平面截球O的表面得到圓C,若圓C的面積等于
8
,則球O的半徑等于______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知球O的表面積為4π,A、B、C三點都在球面上,且任意兩點間的球面距離為
π
2
,則OA與平面ABC所成角的正切值是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知四面體ABCD的六條棱長都是1,則直線AD與平面ABC的夾角的余弦值為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,∠ACB=90°,AB=2,BC=1,AA1=
3

(1)求證:A1C⊥平面AB1C1;
(2)求A1B1與平面AB1C1所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,S是正方形ABCD所在平面外一點,且SD⊥面ABCD,AB=1,SB=
3

(1)求證:BC⊥SC;
(2)設M為棱SA中點,求異面直線DM與SB所成角的大小
(3)求面ASD與面BSC所成二面角的大。

查看答案和解析>>

同步練習冊答案