設(shè)OA是球O的半徑,M是OA的中點(diǎn),過M且與OA成450角的平面截球O的表面得到圓C,若圓C的面積等于
8
,則球O的半徑等于______.
設(shè)球半徑為R,圓C的半徑為r,
由πr2=
8
,得r2=
7
8

由題意可得:OC=
2
2
R
2
=
2
R
4
,
所以R2=(
2
R
4
2+r2=
1
8
R2+
7
8
,解得R=1
所以球O的半徑為1.
故答案為:1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正四棱柱ABCD-A1B1C1D1中,AA1=2AB,則異面直線A1B與AD1所成角的余弦值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,A,B,C,D為空間四點(diǎn),△ABC是等腰三角形,且∠ACB=90°,△ADB是等邊三角形.則AB與CD所成角的大小為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在側(cè)棱垂直底面的四棱柱ABCD-A1B1C1D1中,ADBC,AD⊥AB,AB=
2
.AD=2,BC=4,AA1=2,E是DD1的中點(diǎn),F(xiàn)是平面B1C1E與直線AA1的交點(diǎn).
(1)證明:
(i)EFA1D1;
(ii)BA1⊥平面B1C1EF;
(2)求BC1與平面B1C1EF所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在P是直角梯形ABCD所在平面外一點(diǎn),PA⊥平面ABCD,∠BAD=90°,ADBC,AB=BC=a,AD=2a,PD與底面成30°角,BE⊥PD于E,求直線BE與平面PAD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

下圖是幾何體ABC-A1B1C1的三視圖和直觀圖.M是CC1上的動(dòng)點(diǎn),N,E分別是AM,A1B1的中點(diǎn).
(1)求證:NE平面BB1C1C;
(2)當(dāng)M在CC1的什么位置時(shí),B1M與平面AA1C1C所成的角是30°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知正四面體ABCD的棱長(zhǎng)為a,點(diǎn)O是△BCD的中心,點(diǎn)M是CD中點(diǎn).
(1)求點(diǎn)A到面BCD的距離;
(2)求AB與面BCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四邊形ABCD中,AB=AD=4,BC=CD=
7
,點(diǎn)E為線段AD上的一點(diǎn).現(xiàn)將△DCE沿線段EC翻折到PAC,使得平面PAC⊥平面ABCE,連接PA,PB.
(Ⅰ)證明:BD⊥平面PAC;
(Ⅱ)若∠BAD=60°,且點(diǎn)E為線段AD的中點(diǎn),求直線PE與平面ABCE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在三棱柱ABC-A1B1C1中,AB⊥側(cè)面BB1C1C,已知BC=1,∠BCC1=
π
3
,AB=CC1=2.
(1)求證:C1B⊥平面ABC;
(2)設(shè)E是CC1的中點(diǎn),求AE和平面ABC1所成角正弦值的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案