A. | f(x)=|x|,g(x)=$\left\{\begin{array}{l}{x(x≥0)}\\{-x(x<0)}\end{array}\right.$ | B. | f(x)=$\frac{{x}^{2}-4}{x-2}$,g(x)=x+2 | ||
C. | f(x)=$\sqrt{{x}^{2}}$,g(x)=x+2 | D. | f(x)=$\sqrt{1-{x}^{2}}$+$\sqrt{{x}^{2}-1}$,g(x)=0,x∈{-1,1}. |
分析 分別判斷兩個(gè)函數(shù)的定義域和對應(yīng)法則是否完全相同即可.
解答 解:A.因?yàn)閒(x)=|x|,所以函數(shù)f(x)與g(x)的對應(yīng)法則不一致,所以A不是同一函數(shù).
B.f(x)=$\frac{{x}^{2}-4}{x-2}$=x+2,x≠2,f(x)與g(x)的定義域不一致,所以B不是同一函數(shù).
C.(x)=$\sqrt{{x}^{2}}$=|x|,所以f(x)與g(x)的對應(yīng)法則不一致,所以C不是同一函數(shù).
D.由$\left\{\begin{array}{l}{1-{x}^{2}≥0}\\{{x}^{2}-1≥0}\end{array}\right.$,得$\left\{\begin{array}{l}{{x}^{2}≤1}\\{{x}^{2}≥1}\end{array}\right.$,則x2=1,則x=1或-1,此時(shí)f(x)=0.所以f(x)與g(x)的對應(yīng)法則不一致,所以D是同一函數(shù).
故選:D.
點(diǎn)評 本題主要考查判斷兩個(gè)函數(shù)是否為同一函數(shù),判斷的標(biāo)準(zhǔn)是函數(shù)的定義域與對應(yīng)法則是否完全相同.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1] | B. | [1,+∞) | C. | (-∞,0]∪[1,2] | D. | [0,1]∪[2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com