分析 由題意可得$\frac{1}{x}+\frac{1}{y}$=($\frac{1}{x}+\frac{1}{y}$)(2x+y)=3+$\frac{y}{x}$+$\frac{2x}{y}$,由基本不等式可得.
解答 解:∵2x+y=1,且x>0,y>0,
∴$\frac{1}{x}+\frac{1}{y}$=($\frac{1}{x}+\frac{1}{y}$)(2x+y)
=3+$\frac{y}{x}$+$\frac{2x}{y}$≥3+2$\sqrt{\frac{y}{x}•\frac{2x}{y}}$=3+2$\sqrt{2}$
當(dāng)且僅當(dāng)$\frac{y}{x}$=$\frac{2x}{y}$時(shí)取等號(hào),
結(jié)合2x+y=1可得x=$\frac{2-\sqrt{2}}{2}$且y=$\sqrt{2}$-1,
故答案為:3+2$\sqrt{2}$
點(diǎn)評(píng) 本題考查基本不等式求最值,“1”的代換是解決問(wèn)題的關(guān)鍵,屬基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (a+b)2≥16 | B. | (a+b)2≤16 | C. | (a-b)2≥16 | D. | (a-b)2≤16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | k<-$\frac{1}{2}$ | B. | k>-$\frac{1}{2}$ | C. | k<$\frac{1}{2}$ | D. | k>$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=x-1與y=$\sqrt{(x-1)^{2}}$ | B. | y=$\sqrt{x-1}$與y=$\frac{x-1}{\sqrt{x-1}}$ | ||
C. | y=$\sqrt{x-1}$•$\sqrt{x+1}$與y=$\sqrt{(x+1)(x-1)}$ | D. | y=$\frac{x}{x}$與y=x0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=|x|,g(x)=$\left\{\begin{array}{l}{x(x≥0)}\\{-x(x<0)}\end{array}\right.$ | B. | f(x)=$\frac{{x}^{2}-4}{x-2}$,g(x)=x+2 | ||
C. | f(x)=$\sqrt{{x}^{2}}$,g(x)=x+2 | D. | f(x)=$\sqrt{1-{x}^{2}}$+$\sqrt{{x}^{2}-1}$,g(x)=0,x∈{-1,1}. |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com