如圖,正三棱柱ABC-A'B'C'中,D是BC的中點(diǎn),AA'=AB=2

(1)求證:ADB'D;
(2)求三棱錐A'-AB'D的體積。
(1)詳見(jiàn)解析;(2)體積.

試題分析:(1)在立體幾何中證明直線與平面垂直,一般有以下兩種方法:一是通過(guò)線面垂直來(lái)證明;二是用勾股定理來(lái)證明.在本題中,證明哪條直線垂直哪個(gè)平面?在正三棱柱中,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032309232315.png" style="vertical-align:middle;" />為中點(diǎn),所以,由此可得平面,從而.另外,求出三邊的長(zhǎng),用勾股定理也可證得.
(2)求三棱錐的體積一定要注意頂點(diǎn)的選擇.思路一、連結(jié)于點(diǎn),則的中點(diǎn),所以點(diǎn)到平面的距離等于點(diǎn)到平面的距離,所以可轉(zhuǎn)化為求三棱錐即三棱錐的體積,這樣求就很簡(jiǎn)單了.思路二、轉(zhuǎn)化為求三棱錐的體積.
試題解析:(1)法一、在正三棱柱中,平面平面,平面平面
又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032309263559.png" style="vertical-align:middle;" />,平面,所以平面,
平面,所以.            6分
法二、易得由勾股定理得.         6分
(2)法一、.
法二、.         12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,三角形中,,是邊長(zhǎng)為的正方形,平面⊥底面,若、分別是的中點(diǎn).

(1)求證:∥底面;
(2)求證:⊥平面
(3)求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知平面,四邊形是矩形,,,點(diǎn)分別是,的中點(diǎn).

(Ⅰ)求三棱錐的體積;
(Ⅱ)求證:平面;
(Ⅲ)若點(diǎn)為線段中點(diǎn),求證:∥平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,PA平面ABCD,四邊形ABCD為矩形,PA=AB=,AD=1,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在邊BC上移動(dòng).

(I)求三棱錐E—PAD的體積;
(II)試問(wèn)當(dāng)點(diǎn)E在BC的何處時(shí),有EF//平面PAC;
(1lI)證明:無(wú)論點(diǎn)E在邊BC的何處,都有PEAF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,正三棱柱ABC—A1B1C1的各棱長(zhǎng)都相等,M、E分別是和AB1的中點(diǎn),點(diǎn)F在BC上且滿足BF∶FC=1∶3.

(1)求證:BB1∥平面EFM;
(2)求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐中,底面是邊長(zhǎng)為的菱形,, 底面,,的中點(diǎn),的中點(diǎn).

(Ⅰ)求四棱錐的體積;
(Ⅱ)證明:直線平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

圓柱底面圓的半徑和圓柱的高都為2,則圓柱側(cè)面展開(kāi)圖的面積為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在棱長(zhǎng)為4的正方體ABCD—A1B1C1D1中,E、F分別是AD,A1D1的中點(diǎn),長(zhǎng)為2的線段MN的一個(gè)端點(diǎn)M在線段EF上運(yùn)動(dòng),另一個(gè)端點(diǎn)N在底面A1B1C1D1上運(yùn)動(dòng),則線段MN的中點(diǎn)P在二面角A—A1 D1—B1內(nèi)運(yùn)動(dòng)所形成的軌跡(曲面)的面積為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖直三棱柱ABC﹣A1B1C1的體積為V,點(diǎn)P、Q分別在側(cè)棱AA1和CC1上,AP=C1Q,則四棱錐B﹣APQC的體積為(  )
   
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案