A. | ($\overrightarrow{{a}_{i}}$•$\overrightarrow{{a}_{i+1}}$)min=0 | B. | ($\overrightarrow{{a}_{i}}$•$\overrightarrow{{a}_{i+1}}$)min=-1 | C. | ($\overrightarrow{{a}_{i}}$•$\overrightarrow{{a}_{i+1}}$)max=$\frac{3}{4}$ | D. | ($\overrightarrow{{a}_{i}}$•$\overrightarrow{{a}_{i+1}}$)max=$\frac{2}{3}$ |
分析 由題意可知三向量起點(diǎn)在圓上,終點(diǎn)組成邊長(zhǎng)為1的等邊三角形,建立坐標(biāo)系,設(shè)起點(diǎn)坐標(biāo),表示出各向量的數(shù)量積,利用三角恒等變換求出最值即可得出結(jié)論.
解答 解:設(shè)$\overrightarrow{MA}=\overrightarrow{{a}_{1}}$,$\overrightarrow{MB}=\overrightarrow{{a}_{2}}$,$\overrightarrow{MC}$=$\overrightarrow{{a}_{3}}$,
∵|$\overrightarrow{{a}_{i}}$-$\overrightarrow{{a}_{i+1}}$|=1,∴△ABC是邊長(zhǎng)為1的等邊三角形,
∵$\overrightarrow{{a}_{1}}⊥\overrightarrow{{a}_{2}}$,∴M在以AB為直徑的圓上,
以AB為x軸,以AB的中垂線為y軸建立平面坐標(biāo)系,則A(-$\frac{1}{2}$,0),B($\frac{1}{2}$,0),C(0,$\frac{\sqrt{3}}{2}$),
設(shè)M($\frac{1}{2}$cosα,$\frac{1}{2}$sinα),
則$\overrightarrow{MA}$=(-$\frac{1}{2}$-$\frac{1}{2}$cosα,-$\frac{1}{2}$sinα),$\overrightarrow{MB}$=($\frac{1}{2}-\frac{1}{2}$cosα,-$\frac{1}{2}$sinα),$\overrightarrow{MC}$=(-$\frac{1}{2}$cosα,$\frac{\sqrt{3}}{2}$-$\frac{1}{2}$sinα),
∴$\overrightarrow{MA}•\overrightarrow{MC}$=$\frac{1}{2}$cosα($\frac{1}{2}$+$\frac{1}{2}$cosα)+$\frac{1}{2}$sinα($\frac{1}{2}$sinα-$\frac{\sqrt{3}}{2}$)=$\frac{1}{4}$+$\frac{1}{2}$($\frac{1}{2}$cosα-$\frac{\sqrt{3}}{2}$sinα)=$\frac{1}{4}$+$\frac{1}{2}$cos(α+$\frac{π}{3}$),
∴$\overrightarrow{MA}•\overrightarrow{MC}$的最大值為$\frac{1}{4}+\frac{1}{2}$=$\frac{3}{4}$,最小值為$\frac{1}{4}$-$\frac{1}{2}$=-$\frac{1}{4}$.
由圖形的對(duì)稱性可知$\overrightarrow{MB}•\overrightarrow{MC}$的最大值為$\frac{3}{4}$,最小值為-$\frac{1}{4}$.
又$\overrightarrow{MA}•\overrightarrow{MB}$=0,
∴($\overrightarrow{{a}_{i}}•\overrightarrow{{a}_{i+1}}$)max=$\frac{3}{4}$,($\overrightarrow{{a}_{i}}•\overrightarrow{{a}_{i+1}}$)min=-$\frac{1}{4}$.
故選:C.
點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積運(yùn)算,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
分組 | [10,20) | [20,30) | [30,40) | [40,50) | [50,60) | [60,70] |
頻數(shù) | 2 | 3 | 4 | 5 | 4 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{6}{7}$ | C. | -$\frac{2}{3}$ | D. | -$\frac{6}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{3}{5}$ | C. | $\frac{{3\sqrt{7}}}{7}$ | D. | $\frac{\sqrt{7}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | t=-$\frac{\sqrt{3}}{2}$,m的最小值為$\frac{π}{6}$ | B. | t=-$\frac{\sqrt{3}}{2}$,m的最小值為$\frac{π}{12}$ | ||
C. | t=-$\frac{1}{2}$,m的最小值為$\frac{π}{12}$ | D. | t=-$\frac{1}{2}$,m的最小值為$\frac{π}{6}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com