【題目】某運(yùn)動(dòng)員每次射擊命中不低于8環(huán)的概率為,命中8環(huán)以下的概率為,現(xiàn)用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次射擊中有兩次命中不低于8環(huán),一次命中8環(huán)以下的概率:先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定0、1、2、3、4、5表示命中不低于8環(huán),6、7、8、9表示命中8環(huán)以下,再以每三個(gè)隨機(jī)數(shù)為一組,代表三次射擊的結(jié)果,產(chǎn)生了如下20組隨機(jī)數(shù):
據(jù)此估計(jì),該運(yùn)動(dòng)員三次射擊中有兩次命中不低于8環(huán),一次命中8環(huán)以下的概率為( )
A. B.
C. D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某漁業(yè)公司今年初用98萬(wàn)元購(gòu)進(jìn)一艘漁船進(jìn)行捕撈,第一年需要各種費(fèi)用12萬(wàn)元,從第二年開始包括維修費(fèi)在內(nèi),每年所需費(fèi)用均比上一年增加4萬(wàn)元,該船每年捕撈的總收入為50萬(wàn)元.
(1)該船捕撈第幾年開始盈利?
(2)若該船捕撈年后,年平均盈利達(dá)到最大值,該漁業(yè)公司以24萬(wàn)元的價(jià)格將捕撈船賣出;求并求總的盈利值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列幾個(gè)命題:①若方程的兩個(gè)根異號(hào),則實(shí)數(shù);②函數(shù)是偶函數(shù),但不是奇函數(shù);③函數(shù) 在上是減函數(shù),則實(shí)數(shù)a的取值范圍是;④ 方程 的根滿足,則m滿足的范圍,其中不正確的是( )
A.①B.②C.③D.④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[2018·龍巖質(zhì)檢]已知, .
(1)討論的單調(diào)性;
(2)若,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)、為拋物線上的兩點(diǎn),與的中點(diǎn)的縱坐標(biāo)為4,直線的斜率為.
(1)求拋物線的方程;
(2)已知點(diǎn),、為拋物線(除原點(diǎn)外)上的不同兩點(diǎn),直線、的斜率分別為,,且滿足,記拋物線在、處的切線交于點(diǎn),線段的中點(diǎn)為,若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中, 為等邊三角形,且平面平面, , , .
(Ⅰ)證明: ;
(Ⅱ)若棱錐的體積為,求該四棱錐的側(cè)面積.
【答案】(Ⅰ)證明見解析;(Ⅱ) .
【解析】【試題分析】(I) 取的中點(diǎn)為,連接,.利用等腰三角形的性質(zhì)和矩形的性質(zhì)可證得,由此證得平面,故,故.(II) 可知是棱錐的高,利用體積公式求得,利用勾股定理和等腰三角形的性質(zhì)求得的值,進(jìn)而求得面積.
【試題解析】
證明:(Ⅰ)取的中點(diǎn)為,連接,,
∵為等邊三角形,∴.
底面中,可得四邊形為矩形,∴,
∵,∴平面,
∵平面,∴.
又,所以.
(Ⅱ)由面面,,
∴平面,所以為棱錐的高,
由,知,
,
∴.
由(Ⅰ)知,,∴.
.
由,可知平面,∴,
因此.
在中,,
取的中點(diǎn),連結(jié),則,,
∴ .
所以棱錐的側(cè)面積為.
【題型】解答題
【結(jié)束】
20
【題目】已知圓經(jīng)過(guò)橢圓: 的兩個(gè)焦點(diǎn)和兩個(gè)頂點(diǎn),點(diǎn), , 是橢圓上的兩點(diǎn),它們?cè)?/span>軸兩側(cè),且的平分線在軸上, .
(Ⅰ)求橢圓的方程;
(Ⅱ)證明:直線過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)二次函數(shù)滿足下列條件:當(dāng)時(shí),的最小值為0,且成立;當(dāng)時(shí),恒成立.
(1)求的解析式;
(2)若對(duì),不等式恒成立、求實(shí)數(shù)的取值范圍;
(3)求最大的實(shí)數(shù),使得存在實(shí)數(shù),只要當(dāng)時(shí),就有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為落實(shí)國(guó)家“精準(zhǔn)扶貧”政策,讓市民吃上放心蔬菜,某企業(yè)于2017年在其扶貧基地投入100萬(wàn)元研發(fā)資金,用于蔬菜的種植及開發(fā),并計(jì)劃今后十年內(nèi)在此基礎(chǔ)上,每年投入的資金比上一年增長(zhǎng).
(1)寫出第年(2018年為第一年)該企業(yè)投入的資金數(shù)(萬(wàn)元)與的函數(shù)關(guān)系式,并指出函數(shù)的定義域
(2)該企業(yè)從第幾年開始(2018年為第一年),每年投入的資金數(shù)將超過(guò)200萬(wàn)元?(參考數(shù)據(jù),)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某服裝商場(chǎng),當(dāng)某一季節(jié)即將來(lái)臨時(shí),季節(jié)性服裝的價(jià)格呈現(xiàn)上升趨勢(shì).設(shè)一種服裝原定價(jià)為每件70元,并且每周(7天)每件漲價(jià)6元,5周后開始保持每件100元的價(jià)格平穩(wěn)銷售;10周后,當(dāng)季節(jié)即將過(guò)去時(shí),平均每周每件降價(jià)6元,直到16周末,該服裝不再銷售.
(1)試建立每件的銷售價(jià)格(單位:元)與周次之間的函數(shù)解析式;
(2)若此服裝每件每周進(jìn)價(jià)(單位:元)與周次之間的關(guān)系為,,試問(wèn)該服裝第幾周的每件銷售利潤(rùn)最大?(每件銷售利潤(rùn)=每件銷售價(jià)格-每件進(jìn)價(jià))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com