【題目】某漁業(yè)公司今年初用98萬(wàn)元購(gòu)進(jìn)一艘漁船進(jìn)行捕撈,第一年需要各種費(fèi)用12萬(wàn)元,從第二年開(kāi)始包括維修費(fèi)在內(nèi),每年所需費(fèi)用均比上一年增加4萬(wàn)元,該船每年捕撈的總收入為50萬(wàn)元.

(1)該船捕撈第幾年開(kāi)始盈利?

(2)若該船捕撈年后,年平均盈利達(dá)到最大值,該漁業(yè)公司以24萬(wàn)元的價(jià)格將捕撈船賣(mài)出;求并求總的盈利值.

【答案】(1)第3年后開(kāi)始盈利(2) ,共盈利108萬(wàn)

【解析】

1年后開(kāi)始盈利,盈利為萬(wàn)元,根據(jù)題意列式得到,令y>0解得n的范圍得到結(jié)果;(2)平均盈利為根據(jù)均值不等式得到結(jié)果即可.

(1)設(shè)捕撈年后開(kāi)始盈利,盈利為萬(wàn)元,

,

,得,解得,

,故,即捕撈第3年后開(kāi)始盈利;

(2)平均盈利為

當(dāng)且僅當(dāng),即時(shí),年平均盈利最大,

故經(jīng)過(guò)7年捕撈后年平均盈利最大,共盈利為萬(wàn)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三個(gè)班共有學(xué)生100人,為調(diào)查他們的體育鍛煉情況,通過(guò)分層抽樣獲取了部分學(xué)生一周的鍛煉時(shí)間,數(shù)據(jù)如下表(單位:小時(shí)).

6

7

6

7

8

5

6

7

8

(Ⅰ)試估計(jì)班學(xué)生人數(shù);

(Ⅱ)從班和班抽出來(lái)的學(xué)生中各選一名,記班選出的學(xué)生為甲,班選出的學(xué)生為乙,若學(xué)生鍛煉相互獨(dú)立,求甲的鍛煉時(shí)間大于乙的鍛煉時(shí)間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一元二次函數(shù)fx=ax2+bx+ca0c0)的圖象與x軸有兩個(gè)不同的公共點(diǎn),其中一個(gè)公共點(diǎn)的坐標(biāo)為(c0),且當(dāng)0xc時(shí),恒有fx)>0

1)當(dāng)a=1,時(shí),求出不等式fx)<0的解;

2)求出不等式fx)<0的解(用a,c表示);

3)若以二次函數(shù)的圖象與坐標(biāo)軸的三個(gè)交點(diǎn)為頂點(diǎn)的三角形的面積為8,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓的方程為:

1)過(guò)點(diǎn)作圓的切線,求切線方程

2)過(guò)點(diǎn)作直線與圓交于、,且,求直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方體中,,、、分別是、的中點(diǎn),則異面直線所成角的正弦值是( )

A. B. C. 1 D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班有50名學(xué)生,男女人數(shù)不相等。隨機(jī)詢(xún)問(wèn)了該班5名男生和5名女生的某次數(shù)學(xué)測(cè)試成績(jī),用莖葉圖記錄如下圖所示,則下列說(shuō)法一定正確的是( )

A. 這5名男生成績(jī)的標(biāo)準(zhǔn)差大于這5名女生成績(jī)的標(biāo)準(zhǔn)差。

B. 這5名男生成績(jī)的中位數(shù)大于這5名女生成績(jī)的中位數(shù)。

C. 該班男生成績(jī)的平均數(shù)大于該班女生成績(jī)的平均數(shù)。

D. 這種抽樣方法是一種分層抽樣。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐P-ABCD,底面ABCD為菱形,且∠DAB=60°,△PAB是邊長(zhǎng)為a的正三角形,且平面PAB⊥平面ABCD,已知點(diǎn)M是PD的中點(diǎn).

(1)證明:PB∥平面AMC;

(2)求直線BD與平面AMC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某學(xué)校準(zhǔn)備修建一個(gè)面積為2400平方米的矩形活動(dòng)場(chǎng)地(圖中ABCD)的圍欄,按照修建要求,中間用圍墻EF隔開(kāi),使得ABEF為矩形,EFCD為正方形,設(shè)米,已知圍墻(包括EF)的修建費(fèi)用均為每米500元,設(shè)圍墻(包括EF)的修建總費(fèi)用為y元.

(1)求出y關(guān)于x的函數(shù)解析式及x的取值范圍;

(2)當(dāng)x為何值時(shí),圍墻(包括EF)的修建總費(fèi)用y最?并求出y的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某運(yùn)動(dòng)員每次射擊命中不低于8環(huán)的概率為,命中8環(huán)以下的概率為,現(xiàn)用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次射擊中有兩次命中不低于8環(huán),一次命中8環(huán)以下的概率:先由計(jì)算器產(chǎn)生09之間取整數(shù)值的隨機(jī)數(shù),指定0、1、2、3、4、5表示命中不低于8環(huán),6、7、8、9表示命中8環(huán)以下,再以每三個(gè)隨機(jī)數(shù)為一組,代表三次射擊的結(jié)果,產(chǎn)生了如下20組隨機(jī)數(shù):

據(jù)此估計(jì),該運(yùn)動(dòng)員三次射擊中有兩次命中不低于8環(huán),一次命中8環(huán)以下的概率為(

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案