【題目】設(shè)、為拋物線上的兩點(diǎn),與的中點(diǎn)的縱坐標(biāo)為4,直線的斜率為.
(1)求拋物線的方程;
(2)已知點(diǎn),、為拋物線(除原點(diǎn)外)上的不同兩點(diǎn),直線、的斜率分別為,,且滿足,記拋物線在、處的切線交于點(diǎn),線段的中點(diǎn)為,若,求的值.
【答案】(1)(2)1
【解析】
(1)先)設(shè),,代入拋物線方程得到,,兩式作差,結(jié)合直線的斜率以及與的中點(diǎn)的縱坐標(biāo),即可求出,得到拋物線方程;
(2)先設(shè),,,表示出,,再根據(jù),得到的關(guān)系,設(shè)出直線的方程,聯(lián)立直線與拋物線方程,表示出直線的斜率,進(jìn)而得到直線的方程,同理得到直線的方程,聯(lián)立兩直線方程求出,再由,即可求出結(jié)果.
解:(1)設(shè),.
又、都在拋物線上,
即所以,.
由兩式相減得,
直線的斜率為,.
兩邊同除以,且由已知得,
所以,即.
所以拋物線的方程為.
(2)設(shè),,.
因?yàn)?/span>
所以,所以,
設(shè)直線的斜率為,則直線,
由消得.
由,得,即.
所以直線,
同理得直線.
聯(lián)立以上兩個方程解得
又,
所以,
所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】先后擲一顆質(zhì)地均勻的骰子(骰子的六個面上分別標(biāo)有1,2,3,4,5,6)兩次,落在水平桌面上后,記正面朝上的點(diǎn)數(shù)分別為,記事件為“為偶數(shù)”,事件為“中有偶數(shù)且”,則概率( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且拋物線的焦點(diǎn)恰好是橢圓的一個焦點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)作直線與橢圓交于,兩點(diǎn),點(diǎn)滿足(為坐標(biāo)原點(diǎn)),求四邊形面積的最大值,并求此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且.
(1)判斷函數(shù)的奇偶性;
(2) 判斷函數(shù)在(1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論;
(3)若,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某運(yùn)動員每次射擊命中不低于8環(huán)的概率為,命中8環(huán)以下的概率為,現(xiàn)用隨機(jī)模擬的方法估計(jì)該運(yùn)動員三次射擊中有兩次命中不低于8環(huán),一次命中8環(huán)以下的概率:先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定0、1、2、3、4、5表示命中不低于8環(huán),6、7、8、9表示命中8環(huán)以下,再以每三個隨機(jī)數(shù)為一組,代表三次射擊的結(jié)果,產(chǎn)生了如下20組隨機(jī)數(shù):
據(jù)此估計(jì),該運(yùn)動員三次射擊中有兩次命中不低于8環(huán),一次命中8環(huán)以下的概率為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義域?yàn)?/span>的函數(shù),若同時滿足下列條件:
①在內(nèi)單調(diào)遞增或單調(diào)遞減;
②存在區(qū)間,使在上的值域?yàn)?/span>;那么把()叫閉函數(shù).
(1)求閉函數(shù)符合條件②的區(qū)間;
(2)判斷函數(shù)是否為閉函數(shù)?并說明理由;
(3)判斷函數(shù)是否為閉函數(shù)?若是閉函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長期收益率市場預(yù)測,投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險型產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬元時兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元。
(1)分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系式;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財(cái)投資,怎樣分配資金才能獲得最大收益?其最大收益為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知奇函數(shù)f(x)=,
(1)求實(shí)數(shù)m的值
(2)作出的圖象,并指出當(dāng)方程只有一解,a的取值范圍(不必寫過程)
(3)若函數(shù)在區(qū)間 上單調(diào)遞增,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com