7.C${\;}_{3}^{0}$+C${\;}_{4}^{1}$+C${\;}_{5}^{2}$+…+C${\;}_{21}^{18}$的值等于7315.

分析 利用${∁}_{n}^{k-1}+{∁}_{n}^{k}$=${∁}_{n+1}^{k}$即可得出.

解答 解:C${\;}_{3}^{0}$+C${\;}_{4}^{1}$+C${\;}_{5}^{2}$+…+C${\;}_{21}^{18}$=${∁}_{5}^{1}+{∁}_{5}^{2}$+…+${∁}_{21}^{18}$=${∁}_{6}^{3}+{∁}_{6}^{4}$++…+${∁}_{21}^{18}$=${∁}_{21}^{17}+{∁}_{21}^{18}$=${∁}_{22}^{18}$=${∁}_{22}^{4}$=7315.
故答案為:7315.

點評 本題考查了組合數(shù)的計算公式及其運算性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.我們把平面區(qū)域中橫縱坐標(biāo)均為整數(shù)的點稱為整點,那么在不等式組$\left\{\begin{array}{l}2x-y+2>0\\ x+y-2≤0\\ y≥0\end{array}\right.$表示的平面區(qū)域中,整點的個數(shù)為(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.體育測試成績分別為四個等級,優(yōu)、良、中、不及格,某班55名學(xué)生參加測試的結(jié)果如表:
等級優(yōu)不及格
人數(shù)521245
(1)從該班任意抽取1名學(xué)生,求該名學(xué)生的測試成績?yōu)椤傲肌被颉爸小钡母怕剩?br />(2)測試成績?yōu)椤皟?yōu)”的3名男生記為a1,a2,a3,2名女生的成績記為b1,b2,現(xiàn)從這5人中任選2人參加學(xué)校的某項體育比賽,求參賽學(xué)生中恰有一名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知0<a<b,函數(shù)f(x)=$\frac{1}{x}$+2,則對于任意x1,x2且x1≠x2,使f(b)≤$\frac{g({x}_{1})-g({x}_{2})}{{x}_{1}-{x}_{2}}$≤f(a)恒成立的函數(shù)g(x)可以是( 。
A.g(x)=$\frac{1}{{x}^{2}}$+1B.g(x)=lnx+2xC.g(x)=-$\frac{1}{x}$-2D.g(x)=ex($\frac{1}{x}$+2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.正項數(shù)列{an}的前n項和為Sn,對任意n∈N+都有a31+a32+a33+…+a3n=S2n+2Sn
(1)求a1,a2;
(2)求an及數(shù)列{3${\;}^{{a}_{n}}$-26an}的前n項和Tn的最小值;
(3)設(shè)bn=3n+(-1)n-1•t•2${\;}^{{a}_{n}}$,對任意n∈N+都有bn+1>bn恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{3}}}{2}$,右頂點A(2,0).
(1)求橢圓C的方程;
(2)在x軸上是否存在定點M,使得過M的直線l交橢圓于B、D兩點,且${k_{AB}}{k_{AD}}=-\frac{3}{4}$恒成立?若存在,求出點M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.橢圓y2+$\frac{{x}^{2}}{{m}^{2}}$=1(0<m<1)上存在點P使得PF1⊥PF2,則m的取值范圍是( 。
A.[$\frac{\sqrt{2}}{2}$,1)B.(0,$\frac{\sqrt{2}}{2}$]C.[$\frac{1}{2}$,1)D.(0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某校數(shù)學(xué)文化節(jié)同時安排A、B兩場講座,已知甲、乙兩寢室各有6位同學(xué),甲寢室1人選擇聽A講座,其余5人選擇聽B講座,乙寢室2人選擇聽A講座,其余4人選擇聽B講座,現(xiàn)從甲、乙兩寢室中各任選2人.
(1)求選出的4人均選擇聽B講座的概率;
(2)設(shè)ξ為選出的4人中選擇聽A講座的人數(shù),求ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)a1=1,Sn為數(shù)列{an}的前n項和,且Sn+1-Sn+2Sn+1Sn=0,則數(shù)列{an}的通項公式為 an=$\left\{\begin{array}{l}{1,n=1}\\{-\frac{2}{4{n}^{2}-8n+3},n≥2}\end{array}\right.$.

查看答案和解析>>

同步練習(xí)冊答案