在直角坐標(biāo)系中,點(diǎn)到兩點(diǎn)的距離之和為4,設(shè)點(diǎn)的軌跡為,直線與交于兩點(diǎn)。
(Ⅰ)寫出的方程; (Ⅱ)若,求的值。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)設(shè)橢圓與拋物線的焦點(diǎn)均在軸上,的中心和的頂點(diǎn)均為原點(diǎn),從每條曲線上至少取兩個點(diǎn),將其坐標(biāo)記錄于下表中:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知橢圓C:以雙曲線的焦點(diǎn)為頂點(diǎn),其離心率與雙曲線的離心率互為倒數(shù).
(1)求橢圓C的方程;
(2)若橢圓C的左、右頂點(diǎn)分別為點(diǎn)A,B,點(diǎn)M是橢圓C上異于A,B的任意一點(diǎn).
①求證:直線MA,MB的斜率之積為定值;
②若直線MA,MB與直線x=4分別交于點(diǎn)P,Q,求線段PQ長度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知拋物線的焦點(diǎn)為,準(zhǔn)線為,過上一點(diǎn)P作拋物線的兩切線,切點(diǎn)分別為A、B,
(1)求證:;
(2)求證:A、F、B三點(diǎn)共線;
(3)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知橢圓上的任意一點(diǎn)到它的兩個焦點(diǎn), 的距離之和為,且其焦距為.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線與橢圓交于不同的兩點(diǎn)A,B.問是否存在以A,B為直徑
的圓 過橢圓的右焦點(diǎn).若存在,求出的值;不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)已知中心在原點(diǎn)O,焦點(diǎn)在軸上的橢圓C的離心率為,點(diǎn)A,B分別是橢圓C的長軸、短軸的端點(diǎn),點(diǎn)O到直線AB的距離為。
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)E(3,0),設(shè)點(diǎn)P、Q是橢圓C上的兩個動點(diǎn),滿足EP⊥EQ,
求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的焦點(diǎn)和,長軸長6,設(shè)直線交橢圓于,兩點(diǎn),求線段的中點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
斜率為k的直線過點(diǎn)P(0,1),與雙曲線交于A,B兩點(diǎn).
(1)求實(shí)數(shù)k的取值范圍;
(2)若以AB為直徑的圓過坐標(biāo)原點(diǎn),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
設(shè)直線與拋物線交于不同兩點(diǎn)A、B,F(xiàn)為拋物線的焦點(diǎn)。
(1)求的重心G的軌跡方程;
(2)如果的外接圓的方程。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com