為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下
合計
需要 40 30
不需要 160 270
合計
(Ⅰ)將表格填寫完整,并估計該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;
(Ⅱ)能否在犯錯誤的概率不超過0.01的前提下認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)系?
(Ⅲ)根據(jù)(Ⅱ)的結(jié)論,能否提出更好的調(diào)查方法估計該地區(qū)的老年人中,需要志愿者提供幫助的老年人的比例?說明理由.
附表:
P(K2≥k) 0.050 0.010 0.001
k 3.841 6.635 10.828
考點:獨立性檢驗的應(yīng)用
專題:
分析:(Ⅲ)由列聯(lián)表可知調(diào)查的500位老年人中有40+30=70位需要志愿者提供幫助,兩個數(shù)據(jù)求比值得到該地區(qū)老年人中需要幫助的老年人的比例的估算值.
(Ⅱ)根據(jù)列聯(lián)表所給的數(shù)據(jù),代入隨機變量的觀測值公式,得到觀測值的結(jié)果,把觀測值的結(jié)果與臨界值進行比較,看出有多大把握說該地區(qū)的老年人是否需要幫助與性別有關(guān).
(Ⅲ)從樣本數(shù)據(jù)老年人中需要幫助的比例有明顯差異,調(diào)查時,可以先確定該地區(qū)老年人中男、女的比例,再把老年人分成男、女兩層并采用分層抽樣方法比采用簡單隨機抽樣方法更好.
解答: 解:(Ⅲ)表格填對得(2分),
合計
需  要 40 30 70
不需要 160 270 430
合計 200 300 500
調(diào)查的500位老年人中有70位需要志愿者提供幫助,因此該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例的估計值為
70
500
=14
%.…(4分)
(Ⅱ)K2的觀測值k=
500×(40×270-30×160)2
200×300×70×430
9.967.…(8分)
由于9.967>6.635,…(9分)
所以在犯錯誤的概率不超過0.01的前提下認(rèn)為該地區(qū)的老年人是否需要幫助與性別有關(guān)系.…(10分)
(Ⅲ)由(Ⅱ)的結(jié)論知,該地區(qū)老年人是否需要幫助與性別有關(guān),并且從樣本數(shù)據(jù)能看出該地區(qū)男性老
年人與女性老年人中需要幫助的比例有明顯差異,因此在調(diào)查時,先確定該地區(qū)老年人中男、女
的比例,再把老年人分成男、女兩層并采用分層抽樣方法比采用簡單隨機抽樣方法更好.…(12分)
點評:本題主要考查統(tǒng)計學(xué)知識,考查獨立性檢驗的思想,考查利用數(shù)學(xué)知識研究實際問題的能力以及相應(yīng)的運算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求下列不等式的解集:
(1)(x2+x-2)(x+3)<0;
(2)
4x-7
3-x
≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|log2(4x)•log4
4
x2
≥2},g(x)=
4x
4x+1

(Ⅰ)求出集合A;
(Ⅱ)判斷g(x)的單調(diào)性,并用單調(diào)性的定義證明;
(Ⅲ)當(dāng)λ為何值時,方程g(x)=λ在x∈A上有實數(shù)解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:“復(fù)數(shù)z=(λ2-1)+(λ2-2λ-3)i,(λ∈R)是實數(shù)”,命題q:“在復(fù)平面C內(nèi),復(fù)數(shù)z=λ+(λ2+λ-6)i,(λ∈R)所對應(yīng)的點在第三象限”.
(1)若命題p是真命題,求λ的值;
(2)若“¬p∧q”是真命題,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y=kx+b與曲線x2+4y2-4=0交于A、B兩點,記△AOB的面積為S(O是坐標(biāo)原點).
(1)求曲線的離心率;
(2)求在k=0,0<b<1的條件下,S的最大值;
(3)當(dāng)|AB|=2,S=1時,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式ax2-5x+2b>0的解集為{x|x<2或x>3}.
(1)求a,b的值;
(2)求不等式ax2-(ac+b)+bc≤0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
=(x,1),
b
=(2,-1).
(1)若
a
b
,求x的值;
(2)若
a
b
的夾角為鈍角,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣A=
ab
-14
,A的兩個特征值為λ1=2,λ2=3.
(1)求a,b的值;
(2)求屬于λ2的一個特征向量
α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要獲得函數(shù)y=sin(2x+
π
3
)的圖象,需將y=sinx的圖象
 
(寫出一種變換即可)

查看答案和解析>>

同步練習(xí)冊答案