【題目】設(shè)A、B是橢圓上的兩點(diǎn),點(diǎn)是線段AB的中點(diǎn),線段AB的垂直平分線與橢圓相交于C、D兩點(diǎn).
(1)求直線AB的方程;
(2)判斷A、B、C、D四點(diǎn)是否在同一個(gè)圓上?若是求出圓的方程,若不是說(shuō)明理由.
【答案】(1);(2)是,.
【解析】
(1)利用點(diǎn)差法列式進(jìn)行化簡(jiǎn),由此求得直線的斜率,進(jìn)而求得直線的方程.(2)求得直線的方程,代入橢圓方程,利用根與系數(shù)關(guān)系以及弦長(zhǎng)公式,求得弦長(zhǎng),求得中點(diǎn)的坐標(biāo).同理求得弦長(zhǎng),計(jì)算到直線的距離,由此計(jì)算出
(1)設(shè),,
則有,
依題意,,.
是AB的中點(diǎn),
,,從而.
又,在橢圓內(nèi),
直線AB的方程為,即.
(2)垂直平分AB,直線CD的方程為,即,
代入橢圓方程,整理得①.
又設(shè),,CD的中點(diǎn)為,則,是方程①的兩根,
,且,,即中點(diǎn),
于是由弦長(zhǎng)公式可得
將直線AB的方程,代入橢圓方程得,
同理可得.
點(diǎn)M到直線AB的距離為.
,四點(diǎn)共圓,
且原方程為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C的標(biāo)準(zhǔn)方程為:,該橢圓經(jīng)過(guò)點(diǎn)P(1,),且離心率為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)橢圓長(zhǎng)軸上一點(diǎn)S(1,0)作兩條互相垂直的弦AB、CD.若弦AB、CD的中點(diǎn)分別為M、N,證明:直線MN恒過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2016·雅安高一檢測(cè))已知函數(shù)f(x)=2x的定義域是[0,3],設(shè)g(x)=f(2x)-f(x+2),
(1)求g(x)的解析式及定義域;
(2)求函數(shù)g(x)的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列命題正確的是( )
A.
B.,都有
C.“”是函數(shù)“的最小正周期為”的充要條件
D.命題是假命題,則
E.已知,則“”是“”的既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】f(x)是定義在(0,+∞)上的單調(diào)增函數(shù),滿足f(xy)=f(x)+f(y),f(3)=1,當(dāng)f(x)+f(x-8)≤2時(shí),x的取值范圍是( )
A.(8,+∞)B.(8,9]C.[8,9]D.(0,8)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線與
橢圓的一個(gè)交點(diǎn)為,點(diǎn)
是的焦點(diǎn),且.
(1)求與的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),在第一象限內(nèi),橢圓上是否存在點(diǎn),使過(guò)作的垂線交拋物線于,直線交軸于,且?若存在,求出點(diǎn)的坐標(biāo)和的面積;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)桌面上有一個(gè)由鐵絲圍成的封閉曲線,周長(zhǎng)是.回答下面的問(wèn)題:
(1)當(dāng)封閉曲線為平行四邊形時(shí),用直徑為的圓形紙片是否能完全覆蓋這個(gè)平行四邊形?請(qǐng)說(shuō)明理由.
(2)求證:當(dāng)封閉曲線是四邊形時(shí),正方形的面積最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】滿足性質(zhì):“對(duì)于區(qū)間(1,2)上的任意,恒成立”的函數(shù)叫Ω函數(shù),則下面四個(gè)函數(shù)中,屬于Ω函數(shù)的是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在等腰梯形中,,,,,=60°,沿,折成三棱柱.
(1)若,分別為,的中點(diǎn),求證:∥平面;
(2)若,求二面角的余弦值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com