已知函數(shù)是奇函數(shù),并且函數(shù)的圖像經(jīng)過點(diǎn)(1,3).
(1)求實(shí)數(shù)的值;
(2)求函數(shù)的值域。
(1)a=2,b=0。
(2)函數(shù)的值域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/06/d/sunle.png" style="vertical-align:middle;" />。
解析試題分析:(1)函數(shù)是奇函數(shù),則
…(3分)又函數(shù)的圖像經(jīng)過點(diǎn)(1,3),
∴a=2 …(6分)
(2)由(1)知………(7分)
當(dāng)時(shí),當(dāng)且僅當(dāng)即時(shí)取等號…(10分)
當(dāng)時(shí),當(dāng)且僅當(dāng)即時(shí)取等號…(13分)綜上可知函數(shù)的值域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/06/d/sunle.png" style="vertical-align:middle;" />……(12分)
考點(diǎn):函數(shù)的奇偶性,待定系數(shù)法,均值定理的應(yīng)用。
點(diǎn)評:中檔題,為研究函數(shù)的性質(zhì),首先需要確定函數(shù)的解析式,利用了待定系數(shù)法。確定函數(shù)的值域,方法較多,如,配方法、換元法、單調(diào)性質(zhì)法,均值定理、導(dǎo)數(shù)法等。本題應(yīng)用均值定理,要注意“一正,二定,三相等”,缺一不可。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
我省某景區(qū)為提高經(jīng)濟(jì)效益,現(xiàn)對某一景點(diǎn)進(jìn)行改造升級,從而擴(kuò)大內(nèi)需,提高旅游增加值,經(jīng)過市場調(diào)查,旅游增加值萬元與投入萬元之間滿足:
為常數(shù)。當(dāng)萬元時(shí),萬元;
當(dāng)萬元時(shí),萬元。 (參考數(shù)據(jù):)
(1)求的解析式;
(2)求該景點(diǎn)改造升級后旅游利潤的最大值。(利潤=旅游增加值-投入)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)當(dāng)時(shí),判斷和的大小,并說明理由;
(3)求證:當(dāng)時(shí),關(guān)于的方程:在區(qū)間上總有兩個(gè)不同的解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本為,當(dāng)年產(chǎn)量不足80千件時(shí),(萬元).當(dāng)年產(chǎn)量不小于80千件時(shí),(萬元),每件商品售價(jià)為0.05萬元,通過市場分析,該廠生產(chǎn)的商品能全部售完.
(Ⅰ)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(Ⅱ)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如果函數(shù)f(x)的定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/51/c/vxwsn2.png" style="vertical-align:middle;" />,且f(x)為增函數(shù),f(xy)=f(x)+f(y)。
(1)證明:;
(2)已知f(3)=1,且f(a)>f(a-1)+2,求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
養(yǎng)路處建造無底的圓錐形倉庫用于貯藏食鹽(供融化高速公路上的積雪之用),已建的倉庫的底面直徑為12米,高4米。養(yǎng)路處擬另建一個(gè)更大的圓錐形倉庫,以存放更多食鹽,F(xiàn)有兩種方案:一是新建的倉庫的底面直徑比原來增加4米(高不變);二是高度增加4米(底面直徑不變)。
分別計(jì)算按這兩種方案所建的倉庫的體積;
分別計(jì)算按這兩種方案所建的倉庫的表面積;
哪個(gè)方案更經(jīng)濟(jì)些?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,函數(shù)。
(I)記求的表達(dá)式;
(II)是否存在,使函數(shù)在區(qū)間內(nèi)的圖像上存在兩點(diǎn),在該兩點(diǎn)處的切線相互垂直?若存在,求的取值范圍;若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com