分析 (I)-an,bn,an+1成等差數(shù)列,-bn,an,bn+1也成等差數(shù)列.可得bn=$\frac{{a}_{n+1}-{a}_{n}}{2}$,an=$\frac{_{n+1}-_{n}}{2}$,an+bn=$\frac{1}{2}$[(an+1+bn+1)-(an+bn)],即an+1+bn+1=3(an+bn),即可證明數(shù)列{an+bn}是首項、公比均為3的等比數(shù)列.同理可得:數(shù)列{bn-an}是首項為1、公比均為-1的等比數(shù)列.可得an=$\frac{(_{n}+{a}_{n})-(_{n}-{a}_{n})}{2}$.
(II)cn=(2an-3n)log3[2an-(-1)n]=(-1)n•n,利用“錯位相減法”與等比數(shù)列的求和公式即可得出.
解答 (I)證明:∵-an,bn,an+1成等差數(shù)列,-bn,an,bn+1也成等差數(shù)列.
∴bn=$\frac{{a}_{n+1}-{a}_{n}}{2}$,an=$\frac{_{n+1}-_{n}}{2}$,
∴an+bn=$\frac{1}{2}$[(an+1+bn+1)-(an+bn)],即an+1+bn+1=3(an+bn),
又∵a1+b1=1+2=3,∴數(shù)列{an+bn}是首項、公比均為3的等比數(shù)列;
同理可得:-an+bn=$\frac{1}{2}$[(an+1-bn+1)+(-an+bn)],即an+1-bn+1=-(an-bn),
又∵-a1+b1=-1+2=1,
∴數(shù)列{bn-an}是首項為1、公比均為-1的等比數(shù)列,
∴bn-an=(-1)n+1,
又∵bn+an=3n,
∴an=$\frac{(_{n}+{a}_{n})-(_{n}-{a}_{n})}{2}$=$\frac{1}{2}$[3n-(-1)n+1];
(II)解:∵cn=(2an-3n)log3[2an-(-1)n]
=[3n-(-1)n+1-3n]log3[3n-(-1)n+1-(-1)n]
=(-1)n•n,
∴Tn=-1+2-3+4-…+(-1)n•n,
-Tn=1-2+3-4+…+(-1)n•(n-1)+(-1)n+1•n,
兩式相減得:2Tn=-1+1-1+1-…-1-(-1)n+1•n,
∴Tn=$\frac{1}{2}${$\frac{-[1-(-1)^{n}]}{1-(-1)}$+(-1)n•n}.
點(diǎn)評 本題考查了“錯位相減法”、等差數(shù)列與等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于難題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{9}$ | D. | $\frac{7}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{5}+1}{2}$ | B. | $\sqrt{5}$ | C. | $\frac{\sqrt{2}+1}{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}}{4}$ | C. | $\frac{\sqrt{3}}{2}$或$\sqrt{3}$ | D. | $\frac{\sqrt{3}}{2}$或$\frac{\sqrt{3}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [2,6] | B. | [-6,-2] | C. | (2,6) | D. | (-6,-2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-e2,+∞) | B. | (-e2,0) | C. | (-e-2,+∞) | D. | (-e-2,0) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com